{"title":"孕期和哺乳期摄入丙烯酰胺对后代大鼠胼胝体髓鞘发育的影响。","authors":"Shuping Liu, Dehui Yang, Suqiu Dong, Yuyou Luo, Tong Zhang, Siyuan Li, Yanxian Bai, Lixia Li, Yuxin Ma, Jing Liu","doi":"10.1093/toxres/tfae014","DOIUrl":null,"url":null,"abstract":"<p><p>Acrylamide is an alkene known to induce neurotoxicity in humans and experimental animals. However, the effects of acrylamide on the development of myelin sheath are unclear. The present study was to explore the effects of acrylamide exposure during pregnancy and lactation on the development of myelin sheath in offspring rats. Four groups of thirty-two pregnant Sprague-Dawley rats were exposed to 0, 4.5, 9 and 18 mg/kg BW acrylamide by gavage from gestational day 15 to postnatal day 13. The corpus callosum of nine offspring rats per group were dissected in postpartum day 14. Structural changes and lipid contents in myelin sheaths were examined by transmission electron microscopy(TEM) and Luxol Fast Blue staining(LFB). The expression of MBP and PLP was evaluated by immunohistochemistry and Western blotting. TEM showed that the myelin sheaths in the 18 mg/kg group were disordered compared with control group. Luxol Fast Blue staining gradually decreased with increasing acrylamide maternal exposure. The immunohistochemistry and Western Blotting results showed that maternal exposure to acrylamide caused a decreasing trend in MBP and PLP in the corpus callosum of rats at postnatal day 14. Furthermore, these reduced protein levels may be neurodevelopmental toxicity's mechanism in response to maternal exposure to acrylamide.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 1","pages":"tfae014"},"PeriodicalIF":2.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10836055/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of acrylamide exposure during pregnancy and lactation on the development of myelin sheath of corpus callosum in offspring rats.\",\"authors\":\"Shuping Liu, Dehui Yang, Suqiu Dong, Yuyou Luo, Tong Zhang, Siyuan Li, Yanxian Bai, Lixia Li, Yuxin Ma, Jing Liu\",\"doi\":\"10.1093/toxres/tfae014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acrylamide is an alkene known to induce neurotoxicity in humans and experimental animals. However, the effects of acrylamide on the development of myelin sheath are unclear. The present study was to explore the effects of acrylamide exposure during pregnancy and lactation on the development of myelin sheath in offspring rats. Four groups of thirty-two pregnant Sprague-Dawley rats were exposed to 0, 4.5, 9 and 18 mg/kg BW acrylamide by gavage from gestational day 15 to postnatal day 13. The corpus callosum of nine offspring rats per group were dissected in postpartum day 14. Structural changes and lipid contents in myelin sheaths were examined by transmission electron microscopy(TEM) and Luxol Fast Blue staining(LFB). The expression of MBP and PLP was evaluated by immunohistochemistry and Western blotting. TEM showed that the myelin sheaths in the 18 mg/kg group were disordered compared with control group. Luxol Fast Blue staining gradually decreased with increasing acrylamide maternal exposure. The immunohistochemistry and Western Blotting results showed that maternal exposure to acrylamide caused a decreasing trend in MBP and PLP in the corpus callosum of rats at postnatal day 14. Furthermore, these reduced protein levels may be neurodevelopmental toxicity's mechanism in response to maternal exposure to acrylamide.</p>\",\"PeriodicalId\":105,\"journal\":{\"name\":\"Toxicology Research\",\"volume\":\"13 1\",\"pages\":\"tfae014\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10836055/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/toxres/tfae014\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfae014","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Effects of acrylamide exposure during pregnancy and lactation on the development of myelin sheath of corpus callosum in offspring rats.
Acrylamide is an alkene known to induce neurotoxicity in humans and experimental animals. However, the effects of acrylamide on the development of myelin sheath are unclear. The present study was to explore the effects of acrylamide exposure during pregnancy and lactation on the development of myelin sheath in offspring rats. Four groups of thirty-two pregnant Sprague-Dawley rats were exposed to 0, 4.5, 9 and 18 mg/kg BW acrylamide by gavage from gestational day 15 to postnatal day 13. The corpus callosum of nine offspring rats per group were dissected in postpartum day 14. Structural changes and lipid contents in myelin sheaths were examined by transmission electron microscopy(TEM) and Luxol Fast Blue staining(LFB). The expression of MBP and PLP was evaluated by immunohistochemistry and Western blotting. TEM showed that the myelin sheaths in the 18 mg/kg group were disordered compared with control group. Luxol Fast Blue staining gradually decreased with increasing acrylamide maternal exposure. The immunohistochemistry and Western Blotting results showed that maternal exposure to acrylamide caused a decreasing trend in MBP and PLP in the corpus callosum of rats at postnatal day 14. Furthermore, these reduced protein levels may be neurodevelopmental toxicity's mechanism in response to maternal exposure to acrylamide.