家雀眼部细菌群落活体特征及抗生素干扰的影响

IF 3.9 3区 生物学 Q2 MICROBIOLOGY MicrobiologyOpen Pub Date : 2024-02-04 DOI:10.1002/mbo3.1398
Chava L. Weitzman, Dana M. Hawley, Bahman Rostama, Meghan May, Lisa K. Belden
{"title":"家雀眼部细菌群落活体特征及抗生素干扰的影响","authors":"Chava L. Weitzman,&nbsp;Dana M. Hawley,&nbsp;Bahman Rostama,&nbsp;Meghan May,&nbsp;Lisa K. Belden","doi":"10.1002/mbo3.1398","DOIUrl":null,"url":null,"abstract":"<p>DNA-based methods to measure the abundance and relative abundance of bacterial taxa can be skewed by the presence of dead or transient bacteria. Consequently, the active, functional members of the community may be a small subset of the detected bacterial community. This mismatch can make inferences about the roles of communities in host health difficult and can be particularly problematic for low-abundance microbiomes, such as those on conjunctival surfaces. In this study, we manipulated bacterial communities on bird conjunctiva with a bacteriostatic antibiotic, reducing bacterial activity while preserving viability, to identify the living and active conjunctival communities using comparisons of 16S ribosomal DNA and RNA in paired samples. DNA amplicons included many more sequence variants than RNA amplicons from the same communities, with consequent differences in diversity. While we found that changes in communities in DNA samples broadly represent shifts in the living (RNA-amplicon) communities, assessments of community function may be better described by RNA samples, reducing background noise from dead cells. We further used these data to test RNA:DNA ratios, used in other microbiological contexts, to detect shifts in bacterial activity after antibiotic disruption but were unable to detect changes in bacterial activity with this method.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":"13 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.1398","citationCount":"0","resultStr":"{\"title\":\"Characterizing living ocular bacterial communities and the effects of antibiotic perturbation in house finches\",\"authors\":\"Chava L. Weitzman,&nbsp;Dana M. Hawley,&nbsp;Bahman Rostama,&nbsp;Meghan May,&nbsp;Lisa K. Belden\",\"doi\":\"10.1002/mbo3.1398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>DNA-based methods to measure the abundance and relative abundance of bacterial taxa can be skewed by the presence of dead or transient bacteria. Consequently, the active, functional members of the community may be a small subset of the detected bacterial community. This mismatch can make inferences about the roles of communities in host health difficult and can be particularly problematic for low-abundance microbiomes, such as those on conjunctival surfaces. In this study, we manipulated bacterial communities on bird conjunctiva with a bacteriostatic antibiotic, reducing bacterial activity while preserving viability, to identify the living and active conjunctival communities using comparisons of 16S ribosomal DNA and RNA in paired samples. DNA amplicons included many more sequence variants than RNA amplicons from the same communities, with consequent differences in diversity. While we found that changes in communities in DNA samples broadly represent shifts in the living (RNA-amplicon) communities, assessments of community function may be better described by RNA samples, reducing background noise from dead cells. We further used these data to test RNA:DNA ratios, used in other microbiological contexts, to detect shifts in bacterial activity after antibiotic disruption but were unable to detect changes in bacterial activity with this method.</p>\",\"PeriodicalId\":18573,\"journal\":{\"name\":\"MicrobiologyOpen\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.1398\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MicrobiologyOpen\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.1398\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MicrobiologyOpen","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.1398","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

以 DNA 为基础的细菌分类群丰度和相对丰度测量方法可能会因死亡细菌或瞬时细菌的存在而产生偏差。因此,群落中活跃的功能性成员可能只是检测到的细菌群落的一小部分。这种不匹配会使推断群落在宿主健康中的作用变得困难,对于低丰度微生物群落(如结膜表面的微生物群落)尤其如此。在这项研究中,我们用一种抑菌抗生素处理鸟类结膜上的细菌群落,在保持活力的同时降低细菌活性,从而通过比较配对样本中的 16S 核糖体 DNA 和 RNA 来确定活的和活跃的结膜群落。与来自相同群落的 RNA 扩增片段相比,DNA 扩增片段包含更多的序列变异,因此多样性也存在差异。我们发现,DNA 样本中群落的变化大致代表了活体(RNA 扩增子)群落的变化,而 RNA 样本可以更好地描述群落功能,减少死亡细胞带来的背景噪音。我们进一步利用这些数据测试了 RNA 与 DNA 的比率,这种比率在其他微生物学环境中被用来检测抗生素破坏后细菌活性的变化,但这种方法无法检测到细菌活性的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterizing living ocular bacterial communities and the effects of antibiotic perturbation in house finches

DNA-based methods to measure the abundance and relative abundance of bacterial taxa can be skewed by the presence of dead or transient bacteria. Consequently, the active, functional members of the community may be a small subset of the detected bacterial community. This mismatch can make inferences about the roles of communities in host health difficult and can be particularly problematic for low-abundance microbiomes, such as those on conjunctival surfaces. In this study, we manipulated bacterial communities on bird conjunctiva with a bacteriostatic antibiotic, reducing bacterial activity while preserving viability, to identify the living and active conjunctival communities using comparisons of 16S ribosomal DNA and RNA in paired samples. DNA amplicons included many more sequence variants than RNA amplicons from the same communities, with consequent differences in diversity. While we found that changes in communities in DNA samples broadly represent shifts in the living (RNA-amplicon) communities, assessments of community function may be better described by RNA samples, reducing background noise from dead cells. We further used these data to test RNA:DNA ratios, used in other microbiological contexts, to detect shifts in bacterial activity after antibiotic disruption but were unable to detect changes in bacterial activity with this method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MicrobiologyOpen
MicrobiologyOpen MICROBIOLOGY-
CiteScore
8.00
自引率
0.00%
发文量
78
审稿时长
20 weeks
期刊介绍: MicrobiologyOpen is a peer reviewed, fully open access, broad-scope, and interdisciplinary journal delivering rapid decisions and fast publication of microbial science, a field which is undergoing a profound and exciting evolution in this post-genomic era. The journal aims to serve the research community by providing a vehicle for authors wishing to publish quality research in both fundamental and applied microbiology. Our goal is to publish articles that stimulate discussion and debate, as well as add to our knowledge base and further the understanding of microbial interactions and microbial processes. MicrobiologyOpen gives prompt and equal consideration to articles reporting theoretical, experimental, applied, and descriptive work in all aspects of bacteriology, virology, mycology and protistology, including, but not limited to: - agriculture - antimicrobial resistance - astrobiology - biochemistry - biotechnology - cell and molecular biology - clinical microbiology - computational, systems, and synthetic microbiology - environmental science - evolutionary biology, ecology, and systematics - food science and technology - genetics and genomics - geobiology and earth science - host-microbe interactions - infectious diseases - natural products discovery - pharmaceutical and medicinal chemistry - physiology - plant pathology - veterinary microbiology We will consider submissions across unicellular and cell-cluster organisms: prokaryotes (bacteria, archaea) and eukaryotes (fungi, protists, microalgae, lichens), as well as viruses and prions infecting or interacting with microorganisms, plants and animals, including genetic, biochemical, biophysical, bioinformatic and structural analyses. The journal features Original Articles (including full Research articles, Method articles, and Short Communications), Commentaries, Reviews, and Editorials. Original papers must report well-conducted research with conclusions supported by the data presented in the article. We also support confirmatory research and aim to work with authors to meet reviewer expectations. MicrobiologyOpen publishes articles submitted directly to the journal and those referred from other Wiley journals.
期刊最新文献
Monitoring the Persistence of Pseudomonas sivasensis Strain CF10PS3 in Cereal Fields The Effects of Carbonate on Candida albicans Filamentation, Biofilm Formation, and Antifungal Resistance Bacillus xiamenensis Inhibits the Growth of Moraxella osloensis by Producing Indole-3-Carboxaldehyde Evaluation of DNA Extraction Methods for Microbial Community Profiling in Deadwood Decomposition Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1