通过有限元模拟研究镍铝铁层厚度对磁性声表面波传感器响应的影响

Do Duy Phu, Hong Si Hoang, Le Van Vinh
{"title":"通过有限元模拟研究镍铝铁层厚度对磁性声表面波传感器响应的影响","authors":"Do Duy Phu, Hong Si Hoang, Le Van Vinh","doi":"10.11591/eei.v13i1.6312","DOIUrl":null,"url":null,"abstract":"In this study, we used simulation to investigate the optimal working point of a surface acoustic wave-magnetostriction sensor by varying the thickness of the magnetic sensitive layer using the finite elements method. We evaluated the sensor’s sensitivity by simulating the responses at the optimal point and changing the thickness of the magnetic sensitive layer (h3). Additionally, we reduced the piezoelectric substrate thickness (h1) at the optimal point to determine the limit point of the center frequency (f0) and improve the sensor sensitivity for low magnetic field intensity measurements by performing a wavelength reduction (λ). For the simulation, we selected a delay-line FeNi/IDT/AlN structure with specific materials and electrode parameters. Our results show that the optimal structure of the sensor is at h1=400 μm, λ=40 μm, and h3=1,060 nm, with a maximum f0 of 140.38493 MHz and maximum surface acoustic wave velocity of 5,615.4 m/s. At this optimal structure, the sensitivity reaches the maximum value of 10.287 kHz/Oe with a working range from 0 to 89 Oe. We also found that reducing the piezoelectric substrate thickness to 35 μm significantly reduces the manufacturing and simulation time, but the frequency response cannot determine the center frequency.","PeriodicalId":502860,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"85 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of FeNi-AlN layer thickness on the response of magnetic SAW sensor by FEM simulation\",\"authors\":\"Do Duy Phu, Hong Si Hoang, Le Van Vinh\",\"doi\":\"10.11591/eei.v13i1.6312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we used simulation to investigate the optimal working point of a surface acoustic wave-magnetostriction sensor by varying the thickness of the magnetic sensitive layer using the finite elements method. We evaluated the sensor’s sensitivity by simulating the responses at the optimal point and changing the thickness of the magnetic sensitive layer (h3). Additionally, we reduced the piezoelectric substrate thickness (h1) at the optimal point to determine the limit point of the center frequency (f0) and improve the sensor sensitivity for low magnetic field intensity measurements by performing a wavelength reduction (λ). For the simulation, we selected a delay-line FeNi/IDT/AlN structure with specific materials and electrode parameters. Our results show that the optimal structure of the sensor is at h1=400 μm, λ=40 μm, and h3=1,060 nm, with a maximum f0 of 140.38493 MHz and maximum surface acoustic wave velocity of 5,615.4 m/s. At this optimal structure, the sensitivity reaches the maximum value of 10.287 kHz/Oe with a working range from 0 to 89 Oe. We also found that reducing the piezoelectric substrate thickness to 35 μm significantly reduces the manufacturing and simulation time, but the frequency response cannot determine the center frequency.\",\"PeriodicalId\":502860,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":\"85 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i1.6312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i1.6312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们利用有限元法,通过改变磁敏感层的厚度,对表面声波-磁致伸缩传感器的最佳工作点进行了模拟研究。我们通过模拟最佳点的响应和改变磁敏感层的厚度 (h3) 来评估传感器的灵敏度。此外,我们还减小了最佳点的压电基板厚度 (h1),以确定中心频率 (f0) 的极限点,并通过减小波长 (λ) 来提高传感器对低磁场强度测量的灵敏度。在模拟中,我们选择了具有特定材料和电极参数的延迟线 FeNi/IDT/AlN 结构。结果表明,传感器的最佳结构为 h1=400 μm,λ=40 μm,h3=1,060 nm,最大 f0 为 140.38493 MHz,最大表面声波速度为 5,615.4 m/s。在此最佳结构下,灵敏度达到最大值 10.287 kHz/Oe,工作范围为 0 至 89 Oe。我们还发现,将压电基板厚度减小到 35 μm 可以显著缩短制造和模拟时间,但频率响应无法确定中心频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of FeNi-AlN layer thickness on the response of magnetic SAW sensor by FEM simulation
In this study, we used simulation to investigate the optimal working point of a surface acoustic wave-magnetostriction sensor by varying the thickness of the magnetic sensitive layer using the finite elements method. We evaluated the sensor’s sensitivity by simulating the responses at the optimal point and changing the thickness of the magnetic sensitive layer (h3). Additionally, we reduced the piezoelectric substrate thickness (h1) at the optimal point to determine the limit point of the center frequency (f0) and improve the sensor sensitivity for low magnetic field intensity measurements by performing a wavelength reduction (λ). For the simulation, we selected a delay-line FeNi/IDT/AlN structure with specific materials and electrode parameters. Our results show that the optimal structure of the sensor is at h1=400 μm, λ=40 μm, and h3=1,060 nm, with a maximum f0 of 140.38493 MHz and maximum surface acoustic wave velocity of 5,615.4 m/s. At this optimal structure, the sensitivity reaches the maximum value of 10.287 kHz/Oe with a working range from 0 to 89 Oe. We also found that reducing the piezoelectric substrate thickness to 35 μm significantly reduces the manufacturing and simulation time, but the frequency response cannot determine the center frequency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-project software defect prediction through multiple learning Palembang songket fabric motif image detection with data augmentation based on ResNet using dropout Secure map-based crypto-stego technique based on mac address Low insertion loss open-loop resonator–based microstrip diplexer with high selective for wireless applications Autonomous vehicle tracking control for a curved trajectory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1