马来西亚人对 COVID-19 疫苗接种计划的看法:利用 Twitter 进行的情感分析研究

Mohamed Imran Mohamed Ariff, Nurul Erina Shuhada Zubir, Azilawati Azizan Azilawati Azizan, Samsiah Ahmad, Noreen Izza Arshad Noreen Izza Arshad
{"title":"马来西亚人对 COVID-19 疫苗接种计划的看法:利用 Twitter 进行的情感分析研究","authors":"Mohamed Imran Mohamed Ariff, Nurul Erina Shuhada Zubir, Azilawati Azizan Azilawati Azizan, Samsiah Ahmad, Noreen Izza Arshad Noreen Izza Arshad","doi":"10.11591/eei.v13i1.6097","DOIUrl":null,"url":null,"abstract":"This study aimed to analyze the opinions and emotions of Malaysians towards the COVID-19 vaccination program, as expressed on Twitter. By collecting data from the Twitter network and utilizing the machine learning life cycle technique. The results show that Malaysians have a mostly neutral viewpoint of the COVID-19 vaccination, with an accuracy score of 93%, an F1-score of 94%, a recall measurement of 94%, and a precision measure of 93%. These findings emphasize the significance of understanding public sentiment and perception towards crucial issues such as the COVID-19 vaccine and can be utilized to support healthcare professionals, policymakers, and the public in making informed decisions regarding the COVID-19 vaccination program.","PeriodicalId":502860,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"55 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Malaysian views on COVID-19 vaccination program: a sentiment analysis study using Twitter\",\"authors\":\"Mohamed Imran Mohamed Ariff, Nurul Erina Shuhada Zubir, Azilawati Azizan Azilawati Azizan, Samsiah Ahmad, Noreen Izza Arshad Noreen Izza Arshad\",\"doi\":\"10.11591/eei.v13i1.6097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to analyze the opinions and emotions of Malaysians towards the COVID-19 vaccination program, as expressed on Twitter. By collecting data from the Twitter network and utilizing the machine learning life cycle technique. The results show that Malaysians have a mostly neutral viewpoint of the COVID-19 vaccination, with an accuracy score of 93%, an F1-score of 94%, a recall measurement of 94%, and a precision measure of 93%. These findings emphasize the significance of understanding public sentiment and perception towards crucial issues such as the COVID-19 vaccine and can be utilized to support healthcare professionals, policymakers, and the public in making informed decisions regarding the COVID-19 vaccination program.\",\"PeriodicalId\":502860,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":\"55 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i1.6097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i1.6097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在分析马来西亚人在 Twitter 上表达的对 COVID-19 疫苗接种计划的意见和情绪。通过从 Twitter 网络收集数据,并利用机器学习生命周期技术。结果显示,马来西亚人对 COVID-19 疫苗接种的观点大多是中立的,准确率为 93%,F1 分数为 94%,召回率为 94%,精确率为 93%。这些发现强调了了解公众对 COVID-19 疫苗等关键问题的情绪和看法的重要性,可用于支持医疗保健专业人员、政策制定者和公众就 COVID-19 疫苗接种计划做出明智决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Malaysian views on COVID-19 vaccination program: a sentiment analysis study using Twitter
This study aimed to analyze the opinions and emotions of Malaysians towards the COVID-19 vaccination program, as expressed on Twitter. By collecting data from the Twitter network and utilizing the machine learning life cycle technique. The results show that Malaysians have a mostly neutral viewpoint of the COVID-19 vaccination, with an accuracy score of 93%, an F1-score of 94%, a recall measurement of 94%, and a precision measure of 93%. These findings emphasize the significance of understanding public sentiment and perception towards crucial issues such as the COVID-19 vaccine and can be utilized to support healthcare professionals, policymakers, and the public in making informed decisions regarding the COVID-19 vaccination program.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-project software defect prediction through multiple learning Palembang songket fabric motif image detection with data augmentation based on ResNet using dropout Secure map-based crypto-stego technique based on mac address Low insertion loss open-loop resonator–based microstrip diplexer with high selective for wireless applications Autonomous vehicle tracking control for a curved trajectory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1