{"title":"用高效共轭梯度类解决大规模无约束优化问题","authors":"Sanaz Bojari, Mahmoud Paripour","doi":"10.1155/2024/5548724","DOIUrl":null,"url":null,"abstract":"The main goal of this paper is to introduce an appropriate conjugate gradient class to solve unconstrained optimization problems. The presented class enjoys the benefits of having three free parameters, its directions are descent, and it can fulfill the Dai–Liao conjugacy condition. Global convergence property of the new class is proved under the weak-Wolfe–Powell line search technique. Numerical efficiency of the proposed class is confirmed in three sets of experiments including 210 test problems and 11 disparate conjugate gradient methods.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"14 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving Large-Scale Unconstrained Optimization Problems with an Efficient Conjugate Gradient Class\",\"authors\":\"Sanaz Bojari, Mahmoud Paripour\",\"doi\":\"10.1155/2024/5548724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main goal of this paper is to introduce an appropriate conjugate gradient class to solve unconstrained optimization problems. The presented class enjoys the benefits of having three free parameters, its directions are descent, and it can fulfill the Dai–Liao conjugacy condition. Global convergence property of the new class is proved under the weak-Wolfe–Powell line search technique. Numerical efficiency of the proposed class is confirmed in three sets of experiments including 210 test problems and 11 disparate conjugate gradient methods.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5548724\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/5548724","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Solving Large-Scale Unconstrained Optimization Problems with an Efficient Conjugate Gradient Class
The main goal of this paper is to introduce an appropriate conjugate gradient class to solve unconstrained optimization problems. The presented class enjoys the benefits of having three free parameters, its directions are descent, and it can fulfill the Dai–Liao conjugacy condition. Global convergence property of the new class is proved under the weak-Wolfe–Powell line search technique. Numerical efficiency of the proposed class is confirmed in three sets of experiments including 210 test problems and 11 disparate conjugate gradient methods.
期刊介绍:
Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.