A. D. Burtseva, A. V. Moiseenko, T. N. Baymukhametov, A. A. Dergalev, K. M. Boyko, V. V. Kushnirov
{"title":"来自酿酒酵母的 Sup35 Prion 结构的电子显微镜研究","authors":"A. D. Burtseva, A. V. Moiseenko, T. N. Baymukhametov, A. A. Dergalev, K. M. Boyko, V. V. Kushnirov","doi":"10.1134/S1063774523601120","DOIUrl":null,"url":null,"abstract":"<p>Prions form an infectious version of amyloid; they are involved in the pathogenesis of some human neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases. Yeast prions, in particular, the Sup35 protein, serve an effective model for studying the basic properties of amyloids. Strain versions of the prion form of Sup35 lie in the basis of the conformational diversity of the amyloid structures formed by it, which exhibit different biological properties. The spatial organization of the Sup35 prion has not yet been established. The structure of the strain version W of Sup35 prion protein, isolated ex vivo from yeast <i>Saccharomyces cerevisiae</i>, was studied by transmission electron microscopy (TEM). The parameters of the fibril were estimated, and its structure was reconstructed with a low resolution.</p>","PeriodicalId":527,"journal":{"name":"Crystallography Reports","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electron Microscopy Study of the Structure of the Sup35 Prion from Yeast Saccharomyces cerevisiae\",\"authors\":\"A. D. Burtseva, A. V. Moiseenko, T. N. Baymukhametov, A. A. Dergalev, K. M. Boyko, V. V. Kushnirov\",\"doi\":\"10.1134/S1063774523601120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Prions form an infectious version of amyloid; they are involved in the pathogenesis of some human neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases. Yeast prions, in particular, the Sup35 protein, serve an effective model for studying the basic properties of amyloids. Strain versions of the prion form of Sup35 lie in the basis of the conformational diversity of the amyloid structures formed by it, which exhibit different biological properties. The spatial organization of the Sup35 prion has not yet been established. The structure of the strain version W of Sup35 prion protein, isolated ex vivo from yeast <i>Saccharomyces cerevisiae</i>, was studied by transmission electron microscopy (TEM). The parameters of the fibril were estimated, and its structure was reconstructed with a low resolution.</p>\",\"PeriodicalId\":527,\"journal\":{\"name\":\"Crystallography Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystallography Reports\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063774523601120\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystallography Reports","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1063774523601120","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Electron Microscopy Study of the Structure of the Sup35 Prion from Yeast Saccharomyces cerevisiae
Prions form an infectious version of amyloid; they are involved in the pathogenesis of some human neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases. Yeast prions, in particular, the Sup35 protein, serve an effective model for studying the basic properties of amyloids. Strain versions of the prion form of Sup35 lie in the basis of the conformational diversity of the amyloid structures formed by it, which exhibit different biological properties. The spatial organization of the Sup35 prion has not yet been established. The structure of the strain version W of Sup35 prion protein, isolated ex vivo from yeast Saccharomyces cerevisiae, was studied by transmission electron microscopy (TEM). The parameters of the fibril were estimated, and its structure was reconstructed with a low resolution.
期刊介绍:
Crystallography Reports is a journal that publishes original articles short communications, and reviews on various aspects of crystallography: diffraction and scattering of X-rays, electrons, and neutrons, determination of crystal structure of inorganic and organic substances, including proteins and other biological substances; UV-VIS and IR spectroscopy; growth, imperfect structure and physical properties of crystals; thin films, liquid crystals, nanomaterials, partially disordered systems, and the methods of studies.