评估从美国零售店购买的海产品是否受到持久性环境污染物、杀虫剂和兽药的污染。

IF 2.3 3区 农林科学 Q2 CHEMISTRY, APPLIED Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment Pub Date : 2024-03-01 Epub Date: 2024-02-05 DOI:10.1080/19440049.2024.2310128
Megha Bedi, Yelena Sapozhnikova, Carla Ng
{"title":"评估从美国零售店购买的海产品是否受到持久性环境污染物、杀虫剂和兽药的污染。","authors":"Megha Bedi, Yelena Sapozhnikova, Carla Ng","doi":"10.1080/19440049.2024.2310128","DOIUrl":null,"url":null,"abstract":"<p><p>Studies have reported health risks associated with seafood contamination, but few data exist on levels in commercially available seafood in the US. To better understand, the magnitude of foodborne exposure and identify vulnerable populations in the US, we measured concentrations of veterinary drugs, persistent organic pollutants (POPs) (polycyclic aromatic hydrocarbons [PAHs], polybrominated diphenyl ethers [PBDEs] and polychlorinated biphenyls [PCBs]), and legacy and current-use pesticides in 46 seafood samples purchased from retail outlets. Measured levels were used to estimate risk based on available maximum residue limits (MRLs) and toxic equivalence (TEQ) factors for analytes. Only seventeen of the 445 analytes were detected, at low substance frequencies. However, half of the samples tested positive for one or more analyte, with total concentrations ranging from below the limit of detection (LOD) to as high as 156 µg/kg wet weight. Based on the risk assessment for individual pesticides and veterinary drugs, the hazard quotients (HQ) were all <1, indicating no risk. However, for the sum of PCB126 and PCB167, two dioxin-like PCBs detected in our samples, the TEQ was nearly two orders of magnitude higher than the WHO limits in one catfish sample. Moreover, vulnerable groups with higher rates of consumption of specific fish types may face higher risks.</p>","PeriodicalId":12295,"journal":{"name":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","volume":" ","pages":"325-338"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating contamination of seafood purchased from U.S. retail stores by persistent environmental pollutants, pesticides and veterinary drugs.\",\"authors\":\"Megha Bedi, Yelena Sapozhnikova, Carla Ng\",\"doi\":\"10.1080/19440049.2024.2310128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Studies have reported health risks associated with seafood contamination, but few data exist on levels in commercially available seafood in the US. To better understand, the magnitude of foodborne exposure and identify vulnerable populations in the US, we measured concentrations of veterinary drugs, persistent organic pollutants (POPs) (polycyclic aromatic hydrocarbons [PAHs], polybrominated diphenyl ethers [PBDEs] and polychlorinated biphenyls [PCBs]), and legacy and current-use pesticides in 46 seafood samples purchased from retail outlets. Measured levels were used to estimate risk based on available maximum residue limits (MRLs) and toxic equivalence (TEQ) factors for analytes. Only seventeen of the 445 analytes were detected, at low substance frequencies. However, half of the samples tested positive for one or more analyte, with total concentrations ranging from below the limit of detection (LOD) to as high as 156 µg/kg wet weight. Based on the risk assessment for individual pesticides and veterinary drugs, the hazard quotients (HQ) were all <1, indicating no risk. However, for the sum of PCB126 and PCB167, two dioxin-like PCBs detected in our samples, the TEQ was nearly two orders of magnitude higher than the WHO limits in one catfish sample. Moreover, vulnerable groups with higher rates of consumption of specific fish types may face higher risks.</p>\",\"PeriodicalId\":12295,\"journal\":{\"name\":\"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment\",\"volume\":\" \",\"pages\":\"325-338\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/19440049.2024.2310128\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/19440049.2024.2310128","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

有研究报告称,海鲜污染会对健康造成危害,但有关美国市售海鲜中污染水平的数据却很少。为了更好地了解食源性暴露的严重程度并确定美国的易感人群,我们测量了从零售点购买的 46 个海产品样本中兽药、持久性有机污染物(POPs)(多环芳烃、多溴联苯醚和多氯联苯)以及传统和当前使用的杀虫剂的浓度。根据现有的最大残留限量 (MRL) 和分析物毒性当量 (TEQ) 因子,利用测量到的水平来估算风险。在 445 种分析物中,只有 17 种被检测到,且检测频率较低。不过,半数样本中一种或多种分析物的检测结果呈阳性,总浓度从低于检测限 (LOD) 到高达 156 µg/kg 湿重不等。根据对个别杀虫剂和兽药的风险评估,危害商数(HQ)均为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating contamination of seafood purchased from U.S. retail stores by persistent environmental pollutants, pesticides and veterinary drugs.

Studies have reported health risks associated with seafood contamination, but few data exist on levels in commercially available seafood in the US. To better understand, the magnitude of foodborne exposure and identify vulnerable populations in the US, we measured concentrations of veterinary drugs, persistent organic pollutants (POPs) (polycyclic aromatic hydrocarbons [PAHs], polybrominated diphenyl ethers [PBDEs] and polychlorinated biphenyls [PCBs]), and legacy and current-use pesticides in 46 seafood samples purchased from retail outlets. Measured levels were used to estimate risk based on available maximum residue limits (MRLs) and toxic equivalence (TEQ) factors for analytes. Only seventeen of the 445 analytes were detected, at low substance frequencies. However, half of the samples tested positive for one or more analyte, with total concentrations ranging from below the limit of detection (LOD) to as high as 156 µg/kg wet weight. Based on the risk assessment for individual pesticides and veterinary drugs, the hazard quotients (HQ) were all <1, indicating no risk. However, for the sum of PCB126 and PCB167, two dioxin-like PCBs detected in our samples, the TEQ was nearly two orders of magnitude higher than the WHO limits in one catfish sample. Moreover, vulnerable groups with higher rates of consumption of specific fish types may face higher risks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
6.90%
发文量
136
审稿时长
3 months
期刊介绍: Food Additives & Contaminants: Part A publishes original research papers and critical reviews covering analytical methodology, occurrence, persistence, safety evaluation, detoxification and regulatory control of natural and man-made additives and contaminants in the food and animal feed chain. Papers are published in the areas of food additives including flavourings, pesticide and veterinary drug residues, environmental contaminants, plant toxins, mycotoxins, marine biotoxins, trace elements, migration from food packaging, food process contaminants, adulteration, authenticity and allergenicity of foods. Papers are published on animal feed where residues and contaminants can give rise to food safety concerns. Contributions cover chemistry, biochemistry and bioavailability of these substances, factors affecting levels during production, processing, packaging and storage; the development of novel foods and processes; exposure and risk assessment.
期刊最新文献
Chromatographic determination of oxytetracycline in milk product samples using liquid-liquid microextraction procedure. Evaluation of mycotoxin binders against deoxynivalenol and fumonisin B1 using isotherm models and linear equations. Glyphosate losses through various stages of coffee production and consequences for human exposure. Nanoencapsulation with Eudragit® and chia mucilage increases the stability and antifungal efficacy of carvacrol against Aspergillus spp. Evaluation of cumulative exposures to multiple pesticide residues in three characteristic fruits in the Northwest of Iran: a risk assessment using Monte Carlo Simulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1