Vanni Benvenga, Aline Cuénod, Srinithi Purushothaman, Gottfried Dasen, Maja Weisser, Stefano Bassetti, Tim Roloff, Martin Siegemund, Ulrich Heininger, Julia Bielicki, Marianne Wehrli, Paul Friderich, Reno Frei, Andreas Widmer, Kathrin Herzog, Hans Fankhauser, Oliver Nolte, Thomas Bodmer, Martin Risch, Olivier Dubuis, Sigrid Pranghofer, Romana Calligaris-Maibach, Susanne Graf, Vincent Perreten, Helena M B Seth-Smith, Adrian Egli
{"title":"历史上的耐甲氧西林金黄色葡萄球菌:利用瑞士遗留菌种的分子流行病学特征扩展现有知识。","authors":"Vanni Benvenga, Aline Cuénod, Srinithi Purushothaman, Gottfried Dasen, Maja Weisser, Stefano Bassetti, Tim Roloff, Martin Siegemund, Ulrich Heininger, Julia Bielicki, Marianne Wehrli, Paul Friderich, Reno Frei, Andreas Widmer, Kathrin Herzog, Hans Fankhauser, Oliver Nolte, Thomas Bodmer, Martin Risch, Olivier Dubuis, Sigrid Pranghofer, Romana Calligaris-Maibach, Susanne Graf, Vincent Perreten, Helena M B Seth-Smith, Adrian Egli","doi":"10.1186/s13073-024-01292-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Few methicillin-resistant Staphylococcus aureus (MRSA) from the early years of its global emergence have been sequenced. Knowledge about evolutionary factors promoting the success of specific MRSA multi-locus sequence types (MLSTs) remains scarce. We aimed to characterize a legacy MRSA collection isolated from 1965 to 1987 and compare it against publicly available international and local genomes.</p><p><strong>Methods: </strong>We accessed 451 historic (1965-1987) MRSA isolates stored in the Culture Collection of Switzerland, mostly collected from the Zurich region. We determined phenotypic antimicrobial resistance (AMR) and performed whole genome sequencing (WGS) using Illumina short-read sequencing on all isolates and long-read sequencing on a selection with Oxford Nanopore Technology. For context, we included 103 publicly available international assemblies from 1960 to 1992 and sequenced 1207 modern Swiss MRSA isolates from 2007 to 2022. We analyzed the core genome (cg)MLST and predicted SCCmec cassette types, AMR, and virulence genes.</p><p><strong>Results: </strong>Among the 451 historic Swiss MRSA isolates, we found 17 sequence types (STs) of which 11 have been previously described. Two STs were novel combinations of known loci and six isolates carried previously unsubmitted MLST alleles, representing five new STs (ST7843, ST7844, ST7837, ST7839, and ST7842). Most isolates (83% 376/451) represented ST247-MRSA-I isolated in the 1960s, followed by ST7844 (6% 25/451), a novel single locus variant (SLV) of ST239. Analysis by cgMLST indicated that isolates belonging to ST7844-MRSA-III cluster within the diversity of ST239-MRSA-III. Early MRSA were predominantly from clonal complex (CC)8. From 1980 to the end of the twentieth century, we observed that CC22 and CC5 as well as CC8 were present, both locally and internationally.</p><p><strong>Conclusions: </strong>The combined analysis of 1761 historic and contemporary MRSA isolates across more than 50 years uncovered novel STs and allowed us a glimpse into the lineage flux between Swiss-German and international MRSA across time.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":null,"pages":null},"PeriodicalIF":10.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840241/pdf/","citationCount":"0","resultStr":"{\"title\":\"Historic methicillin-resistant Staphylococcus aureus: expanding current knowledge using molecular epidemiological characterization of a Swiss legacy collection.\",\"authors\":\"Vanni Benvenga, Aline Cuénod, Srinithi Purushothaman, Gottfried Dasen, Maja Weisser, Stefano Bassetti, Tim Roloff, Martin Siegemund, Ulrich Heininger, Julia Bielicki, Marianne Wehrli, Paul Friderich, Reno Frei, Andreas Widmer, Kathrin Herzog, Hans Fankhauser, Oliver Nolte, Thomas Bodmer, Martin Risch, Olivier Dubuis, Sigrid Pranghofer, Romana Calligaris-Maibach, Susanne Graf, Vincent Perreten, Helena M B Seth-Smith, Adrian Egli\",\"doi\":\"10.1186/s13073-024-01292-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Few methicillin-resistant Staphylococcus aureus (MRSA) from the early years of its global emergence have been sequenced. Knowledge about evolutionary factors promoting the success of specific MRSA multi-locus sequence types (MLSTs) remains scarce. We aimed to characterize a legacy MRSA collection isolated from 1965 to 1987 and compare it against publicly available international and local genomes.</p><p><strong>Methods: </strong>We accessed 451 historic (1965-1987) MRSA isolates stored in the Culture Collection of Switzerland, mostly collected from the Zurich region. We determined phenotypic antimicrobial resistance (AMR) and performed whole genome sequencing (WGS) using Illumina short-read sequencing on all isolates and long-read sequencing on a selection with Oxford Nanopore Technology. For context, we included 103 publicly available international assemblies from 1960 to 1992 and sequenced 1207 modern Swiss MRSA isolates from 2007 to 2022. We analyzed the core genome (cg)MLST and predicted SCCmec cassette types, AMR, and virulence genes.</p><p><strong>Results: </strong>Among the 451 historic Swiss MRSA isolates, we found 17 sequence types (STs) of which 11 have been previously described. Two STs were novel combinations of known loci and six isolates carried previously unsubmitted MLST alleles, representing five new STs (ST7843, ST7844, ST7837, ST7839, and ST7842). Most isolates (83% 376/451) represented ST247-MRSA-I isolated in the 1960s, followed by ST7844 (6% 25/451), a novel single locus variant (SLV) of ST239. Analysis by cgMLST indicated that isolates belonging to ST7844-MRSA-III cluster within the diversity of ST239-MRSA-III. Early MRSA were predominantly from clonal complex (CC)8. From 1980 to the end of the twentieth century, we observed that CC22 and CC5 as well as CC8 were present, both locally and internationally.</p><p><strong>Conclusions: </strong>The combined analysis of 1761 historic and contemporary MRSA isolates across more than 50 years uncovered novel STs and allowed us a glimpse into the lineage flux between Swiss-German and international MRSA across time.</p>\",\"PeriodicalId\":12645,\"journal\":{\"name\":\"Genome Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840241/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Medicine\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13073-024-01292-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-024-01292-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Historic methicillin-resistant Staphylococcus aureus: expanding current knowledge using molecular epidemiological characterization of a Swiss legacy collection.
Background: Few methicillin-resistant Staphylococcus aureus (MRSA) from the early years of its global emergence have been sequenced. Knowledge about evolutionary factors promoting the success of specific MRSA multi-locus sequence types (MLSTs) remains scarce. We aimed to characterize a legacy MRSA collection isolated from 1965 to 1987 and compare it against publicly available international and local genomes.
Methods: We accessed 451 historic (1965-1987) MRSA isolates stored in the Culture Collection of Switzerland, mostly collected from the Zurich region. We determined phenotypic antimicrobial resistance (AMR) and performed whole genome sequencing (WGS) using Illumina short-read sequencing on all isolates and long-read sequencing on a selection with Oxford Nanopore Technology. For context, we included 103 publicly available international assemblies from 1960 to 1992 and sequenced 1207 modern Swiss MRSA isolates from 2007 to 2022. We analyzed the core genome (cg)MLST and predicted SCCmec cassette types, AMR, and virulence genes.
Results: Among the 451 historic Swiss MRSA isolates, we found 17 sequence types (STs) of which 11 have been previously described. Two STs were novel combinations of known loci and six isolates carried previously unsubmitted MLST alleles, representing five new STs (ST7843, ST7844, ST7837, ST7839, and ST7842). Most isolates (83% 376/451) represented ST247-MRSA-I isolated in the 1960s, followed by ST7844 (6% 25/451), a novel single locus variant (SLV) of ST239. Analysis by cgMLST indicated that isolates belonging to ST7844-MRSA-III cluster within the diversity of ST239-MRSA-III. Early MRSA were predominantly from clonal complex (CC)8. From 1980 to the end of the twentieth century, we observed that CC22 and CC5 as well as CC8 were present, both locally and internationally.
Conclusions: The combined analysis of 1761 historic and contemporary MRSA isolates across more than 50 years uncovered novel STs and allowed us a glimpse into the lineage flux between Swiss-German and international MRSA across time.
期刊介绍:
Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.