肺癌多基因风险评分 (PRS) 在个体层面的不确定性对风险分层的影响。

IF 10.4 1区 生物学 Q1 GENETICS & HEREDITY Genome Medicine Pub Date : 2024-02-05 DOI:10.1186/s13073-024-01298-4
Xinan Wang, Ziwei Zhang, Yi Ding, Tony Chen, Lorelei Mucci, Demetrios Albanes, Maria Teresa Landi, Neil E Caporaso, Stephen Lam, Adonina Tardon, Chu Chen, Stig E Bojesen, Mattias Johansson, Angela Risch, Heike Bickeböller, H-Erich Wichmann, Gadi Rennert, Susanne Arnold, Paul Brennan, James D McKay, John K Field, Sanjay S Shete, Loic Le Marchand, Geoffrey Liu, Angeline S Andrew, Lambertus A Kiemeney, Shan Zienolddiny-Narui, Annelie Behndig, Mikael Johansson, Angie Cox, Philip Lazarus, Matthew B Schabath, Melinda C Aldrich, Rayjean J Hung, Christopher I Amos, Xihong Lin, David C Christiani
{"title":"肺癌多基因风险评分 (PRS) 在个体层面的不确定性对风险分层的影响。","authors":"Xinan Wang, Ziwei Zhang, Yi Ding, Tony Chen, Lorelei Mucci, Demetrios Albanes, Maria Teresa Landi, Neil E Caporaso, Stephen Lam, Adonina Tardon, Chu Chen, Stig E Bojesen, Mattias Johansson, Angela Risch, Heike Bickeböller, H-Erich Wichmann, Gadi Rennert, Susanne Arnold, Paul Brennan, James D McKay, John K Field, Sanjay S Shete, Loic Le Marchand, Geoffrey Liu, Angeline S Andrew, Lambertus A Kiemeney, Shan Zienolddiny-Narui, Annelie Behndig, Mikael Johansson, Angie Cox, Philip Lazarus, Matthew B Schabath, Melinda C Aldrich, Rayjean J Hung, Christopher I Amos, Xihong Lin, David C Christiani","doi":"10.1186/s13073-024-01298-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Although polygenic risk score (PRS) has emerged as a promising tool for predicting cancer risk from genome-wide association studies (GWAS), the individual-level accuracy of lung cancer PRS and the extent to which its impact on subsequent clinical applications remains largely unexplored.</p><p><strong>Methods: </strong>Lung cancer PRSs and confidence/credible interval (CI) were constructed using two statistical approaches for each individual: (1) the weighted sum of 16 GWAS-derived significant SNP loci and the CI through the bootstrapping method (PRS-16-CV) and (2) LDpred2 and the CI through posteriors sampling (PRS-Bayes), among 17,166 lung cancer cases and 12,894 controls with European ancestry from the International Lung Cancer Consortium. Individuals were classified into different genetic risk subgroups based on the relationship between their own PRS mean/PRS CI and the population level threshold.</p><p><strong>Results: </strong>Considerable variances in PRS point estimates at the individual level were observed for both methods, with an average standard deviation (s.d.) of 0.12 for PRS-16-CV and a much larger s.d. of 0.88 for PRS-Bayes. Using PRS-16-CV, only 25.0% of individuals with PRS point estimates in the lowest decile of PRS and 16.8% in the highest decile have their entire 95% CI fully contained in the lowest and highest decile, respectively, while PRS-Bayes was unable to find any eligible individuals. Only 19% of the individuals were concordantly identified as having high genetic risk (> 90th percentile) using the two PRS estimators. An increased relative risk of lung cancer comparing the highest PRS percentile to the lowest was observed when taking the CI into account (OR = 2.73, 95% CI: 2.12-3.50, P-value = 4.13 × 10<sup>-15</sup>) compared to using PRS-16-CV mean (OR = 2.23, 95% CI: 1.99-2.49, P-value = 5.70 × 10<sup>-46</sup>). Improved risk prediction performance with higher AUC was consistently observed in individuals identified by PRS-16-CV CI, and the best performance was achieved by incorporating age, gender, and detailed smoking pack-years (AUC: 0.73, 95% CI = 0.72-0.74).</p><p><strong>Conclusions: </strong>Lung cancer PRS estimates using different methods have modest correlations at the individual level, highlighting the importance of considering individual-level uncertainty when evaluating the practical utility of PRS.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":null,"pages":null},"PeriodicalIF":10.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840262/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of individual level uncertainty of lung cancer polygenic risk score (PRS) on risk stratification.\",\"authors\":\"Xinan Wang, Ziwei Zhang, Yi Ding, Tony Chen, Lorelei Mucci, Demetrios Albanes, Maria Teresa Landi, Neil E Caporaso, Stephen Lam, Adonina Tardon, Chu Chen, Stig E Bojesen, Mattias Johansson, Angela Risch, Heike Bickeböller, H-Erich Wichmann, Gadi Rennert, Susanne Arnold, Paul Brennan, James D McKay, John K Field, Sanjay S Shete, Loic Le Marchand, Geoffrey Liu, Angeline S Andrew, Lambertus A Kiemeney, Shan Zienolddiny-Narui, Annelie Behndig, Mikael Johansson, Angie Cox, Philip Lazarus, Matthew B Schabath, Melinda C Aldrich, Rayjean J Hung, Christopher I Amos, Xihong Lin, David C Christiani\",\"doi\":\"10.1186/s13073-024-01298-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Although polygenic risk score (PRS) has emerged as a promising tool for predicting cancer risk from genome-wide association studies (GWAS), the individual-level accuracy of lung cancer PRS and the extent to which its impact on subsequent clinical applications remains largely unexplored.</p><p><strong>Methods: </strong>Lung cancer PRSs and confidence/credible interval (CI) were constructed using two statistical approaches for each individual: (1) the weighted sum of 16 GWAS-derived significant SNP loci and the CI through the bootstrapping method (PRS-16-CV) and (2) LDpred2 and the CI through posteriors sampling (PRS-Bayes), among 17,166 lung cancer cases and 12,894 controls with European ancestry from the International Lung Cancer Consortium. Individuals were classified into different genetic risk subgroups based on the relationship between their own PRS mean/PRS CI and the population level threshold.</p><p><strong>Results: </strong>Considerable variances in PRS point estimates at the individual level were observed for both methods, with an average standard deviation (s.d.) of 0.12 for PRS-16-CV and a much larger s.d. of 0.88 for PRS-Bayes. Using PRS-16-CV, only 25.0% of individuals with PRS point estimates in the lowest decile of PRS and 16.8% in the highest decile have their entire 95% CI fully contained in the lowest and highest decile, respectively, while PRS-Bayes was unable to find any eligible individuals. Only 19% of the individuals were concordantly identified as having high genetic risk (> 90th percentile) using the two PRS estimators. An increased relative risk of lung cancer comparing the highest PRS percentile to the lowest was observed when taking the CI into account (OR = 2.73, 95% CI: 2.12-3.50, P-value = 4.13 × 10<sup>-15</sup>) compared to using PRS-16-CV mean (OR = 2.23, 95% CI: 1.99-2.49, P-value = 5.70 × 10<sup>-46</sup>). Improved risk prediction performance with higher AUC was consistently observed in individuals identified by PRS-16-CV CI, and the best performance was achieved by incorporating age, gender, and detailed smoking pack-years (AUC: 0.73, 95% CI = 0.72-0.74).</p><p><strong>Conclusions: </strong>Lung cancer PRS estimates using different methods have modest correlations at the individual level, highlighting the importance of considering individual-level uncertainty when evaluating the practical utility of PRS.</p>\",\"PeriodicalId\":12645,\"journal\":{\"name\":\"Genome Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840262/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Medicine\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13073-024-01298-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-024-01298-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

背景:尽管多基因风险评分(PRS)已成为从全基因组关联研究(GWAS)中预测癌症风险的一种有前途的工具,但肺癌多基因风险评分在个体水平上的准确性及其对后续临床应用的影响程度在很大程度上仍未得到探讨:在国际肺癌联盟(International Lung Cancer Consortium)的 17,166 例肺癌病例和 12,894 例具有欧洲血统的对照中,采用两种统计方法为每个个体构建肺癌 PRS 和置信度/可信区间(CI):(1) 通过引导法(PRS-16-CV)计算 16 个 GWAS 衍生的重要 SNP 位点的加权和及 CI;(2) 通过后验法(PRS-Bayes)计算 LDpred2 及 CI。根据个体自身的 PRS 平均值/PRS CI 与群体水平阈值之间的关系,将个体划分为不同的遗传风险亚组:两种方法在个体水平上的 PRS 点估计值都存在相当大的差异,PRS-16-CV 的平均标准偏差 (s.d.) 为 0.12,而 PRS-Bayes 的标准偏差 (s.d.) 则大得多,为 0.88。使用 PRS-16-CV,PRS 点估计值处于 PRS 最低十分位数的个体中只有 25.0%,处于最高十分位数的个体中只有 16.8%,他们的整个 95% CI 分别完全包含在最低和最高十分位数中,而 PRS-Bayes 无法找到任何符合条件的个体。使用这两种 PRS 估计方法,只有 19% 的个体被一致认定为具有高遗传风险(> 90 百分位数)。与使用 PRS-16-CV 平均值(OR = 2.23,95% CI:1.99-2.49,P-value = 5.70 × 10-46)相比,在考虑 CI 的情况下(OR = 2.73,95% CI:2.12-3.50,P-value = 4.13 × 10-15),PRS 最高百分位数与最低百分位数相比,肺癌相对风险增加。在使用 PRS-16-CV CI 确定的个体中,始终可以观察到更高 AUC 的改进风险预测性能,而结合年龄、性别和详细的吸烟包年(AUC:0.73,95% CI = 0.72-0.74)可获得最佳性能:结论:使用不同方法估算的肺癌 PRS 在个体水平上具有适度的相关性,这突出了在评估 PRS 实际效用时考虑个体水平不确定性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of individual level uncertainty of lung cancer polygenic risk score (PRS) on risk stratification.

Background: Although polygenic risk score (PRS) has emerged as a promising tool for predicting cancer risk from genome-wide association studies (GWAS), the individual-level accuracy of lung cancer PRS and the extent to which its impact on subsequent clinical applications remains largely unexplored.

Methods: Lung cancer PRSs and confidence/credible interval (CI) were constructed using two statistical approaches for each individual: (1) the weighted sum of 16 GWAS-derived significant SNP loci and the CI through the bootstrapping method (PRS-16-CV) and (2) LDpred2 and the CI through posteriors sampling (PRS-Bayes), among 17,166 lung cancer cases and 12,894 controls with European ancestry from the International Lung Cancer Consortium. Individuals were classified into different genetic risk subgroups based on the relationship between their own PRS mean/PRS CI and the population level threshold.

Results: Considerable variances in PRS point estimates at the individual level were observed for both methods, with an average standard deviation (s.d.) of 0.12 for PRS-16-CV and a much larger s.d. of 0.88 for PRS-Bayes. Using PRS-16-CV, only 25.0% of individuals with PRS point estimates in the lowest decile of PRS and 16.8% in the highest decile have their entire 95% CI fully contained in the lowest and highest decile, respectively, while PRS-Bayes was unable to find any eligible individuals. Only 19% of the individuals were concordantly identified as having high genetic risk (> 90th percentile) using the two PRS estimators. An increased relative risk of lung cancer comparing the highest PRS percentile to the lowest was observed when taking the CI into account (OR = 2.73, 95% CI: 2.12-3.50, P-value = 4.13 × 10-15) compared to using PRS-16-CV mean (OR = 2.23, 95% CI: 1.99-2.49, P-value = 5.70 × 10-46). Improved risk prediction performance with higher AUC was consistently observed in individuals identified by PRS-16-CV CI, and the best performance was achieved by incorporating age, gender, and detailed smoking pack-years (AUC: 0.73, 95% CI = 0.72-0.74).

Conclusions: Lung cancer PRS estimates using different methods have modest correlations at the individual level, highlighting the importance of considering individual-level uncertainty when evaluating the practical utility of PRS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Medicine
Genome Medicine GENETICS & HEREDITY-
CiteScore
20.80
自引率
0.80%
发文量
128
审稿时长
6-12 weeks
期刊介绍: Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.
期刊最新文献
Curating genomic disease-gene relationships with Gene2Phenotype (G2P). Circular RNA landscape in extracellular vesicles from human biofluids. Cardiomyopathies in 100,000 genomes project: interval evaluation improves diagnostic yield and informs strategies for ongoing gene discovery. Developmental-status-aware transcriptional decomposition establishes a cell state panorama of human cancers. A genome-based survey of invasive pneumococci in Norway over four decades reveals lineage-specific responses to vaccination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1