{"title":"美国环保局 PM 监测点位置对美国人口的代表性:对空气污染预测模型的影响。","authors":"Meredith Pedde, Sara D. Adar","doi":"10.1038/s41370-024-00644-3","DOIUrl":null,"url":null,"abstract":"Air pollution prediction modeling establishes relationships between measurements and geographical and meteorological characteristics to infer concentrations at locations without measurements. Since air pollution monitors are limited in number, predictions may be generated for locations different than those used to train the model. The epidemiologic impacts of this potential mismatch hinge on whether the population resides in areas well-represented by monitoring sites. Here we quantify the fraction of the population with geographical characteristics not reflected by the 2000, 2010, and 2020 EPA PM2.5 and PM10 regulatory sites. We evaluated this measure nationwide, regionally, and by race. Nationally, the networks were very representative of the population experience; however, there was less overlap regionally and in regions stratified by race. This suggests that sub-national exposure modeling should carefully consider the representativeness of monitors for their populations. It also highlights that exposure models often borrow information from distal places to predict full population exposure.","PeriodicalId":15684,"journal":{"name":"Journal of Exposure Science and Environmental Epidemiology","volume":"34 5","pages":"821-826"},"PeriodicalIF":4.1000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representativeness of the US EPA PM monitoring site locations to the US population: implications for air pollution prediction modeling\",\"authors\":\"Meredith Pedde, Sara D. Adar\",\"doi\":\"10.1038/s41370-024-00644-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Air pollution prediction modeling establishes relationships between measurements and geographical and meteorological characteristics to infer concentrations at locations without measurements. Since air pollution monitors are limited in number, predictions may be generated for locations different than those used to train the model. The epidemiologic impacts of this potential mismatch hinge on whether the population resides in areas well-represented by monitoring sites. Here we quantify the fraction of the population with geographical characteristics not reflected by the 2000, 2010, and 2020 EPA PM2.5 and PM10 regulatory sites. We evaluated this measure nationwide, regionally, and by race. Nationally, the networks were very representative of the population experience; however, there was less overlap regionally and in regions stratified by race. This suggests that sub-national exposure modeling should carefully consider the representativeness of monitors for their populations. It also highlights that exposure models often borrow information from distal places to predict full population exposure.\",\"PeriodicalId\":15684,\"journal\":{\"name\":\"Journal of Exposure Science and Environmental Epidemiology\",\"volume\":\"34 5\",\"pages\":\"821-826\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Exposure Science and Environmental Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41370-024-00644-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Exposure Science and Environmental Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41370-024-00644-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Representativeness of the US EPA PM monitoring site locations to the US population: implications for air pollution prediction modeling
Air pollution prediction modeling establishes relationships between measurements and geographical and meteorological characteristics to infer concentrations at locations without measurements. Since air pollution monitors are limited in number, predictions may be generated for locations different than those used to train the model. The epidemiologic impacts of this potential mismatch hinge on whether the population resides in areas well-represented by monitoring sites. Here we quantify the fraction of the population with geographical characteristics not reflected by the 2000, 2010, and 2020 EPA PM2.5 and PM10 regulatory sites. We evaluated this measure nationwide, regionally, and by race. Nationally, the networks were very representative of the population experience; however, there was less overlap regionally and in regions stratified by race. This suggests that sub-national exposure modeling should carefully consider the representativeness of monitors for their populations. It also highlights that exposure models often borrow information from distal places to predict full population exposure.
期刊介绍:
Journal of Exposure Science and Environmental Epidemiology (JESEE) aims to be the premier and authoritative source of information on advances in exposure science for professionals in a wide range of environmental and public health disciplines.
JESEE publishes original peer-reviewed research presenting significant advances in exposure science and exposure analysis, including development and application of the latest technologies for measuring exposures, and innovative computational approaches for translating novel data streams to characterize and predict exposures. The types of papers published in the research section of JESEE are original research articles, translation studies, and correspondence. Reported results should further understanding of the relationship between environmental exposure and human health, describe evaluated novel exposure science tools, or demonstrate potential of exposure science to enable decisions and actions that promote and protect human health.