椎间盘源性腰痛应力分布和活动范围的有限元分析

IF 3.8 2区 医学 Q1 CLINICAL NEUROLOGY Neurospine Pub Date : 2024-06-01 Epub Date: 2024-02-01 DOI:10.14245/ns.2347216.608
Pyung-Goo Cho, Seon-Jin Yoon, Dong Ah Shin, Min Cheol Chang
{"title":"椎间盘源性腰痛应力分布和活动范围的有限元分析","authors":"Pyung-Goo Cho, Seon-Jin Yoon, Dong Ah Shin, Min Cheol Chang","doi":"10.14245/ns.2347216.608","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Precise knowledge regarding the mechanical stress applied to the intervertebral disc following each individual spine motion enables physicians and patients to understand how people with discogenic back pain should be guided in their exercises and which spine motions to specifically avoid. We created an intervertebral disc degeneration model and conducted a finite element (FE) analysis of loaded stresses following each spinal posture or motion.</p><p><strong>Methods: </strong>A 3-dimensional FE model of intervertebral disc degeneration at L4-5 was constructed. The intervertebral disc degeneration model was created according to the modified Dallas discogram scale. The von Mises stress and range of motion (ROM) regarding the intervertebral discs and the endplates were analyzed.</p><p><strong>Results: </strong>We observed that mechanical stresses loaded onto the intervertebral discs were similar during flexion, extension, and lateral bending, which were greater than those occurring during torsion. Based on the comparison among the grades divided by the modified Dallas discogram scale, the mechanical stress during extension was greater in grades 3-5 than it was during the others. During extension, the mechanical stress loaded onto the intervertebral disc and endplate was greatest in the posterior portion. Mechanical stresses loaded onto the intervertebral disc were greater in grades 3-5 compared to those in grades 0-2.</p><p><strong>Conclusion: </strong>Our findings suggest that it might be beneficial for patients experiencing discogenic back pain to maintain a neutral posture in their lumbar spine when engaging in daily activities and exercises, especially those suffering from significant intravertebral disc degeneration.</p>","PeriodicalId":19269,"journal":{"name":"Neurospine","volume":" ","pages":"536-543"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224725/pdf/","citationCount":"0","resultStr":"{\"title\":\"Finite Element Analysis of Stress Distribution and Range of Motion in Discogenic Back Pain.\",\"authors\":\"Pyung-Goo Cho, Seon-Jin Yoon, Dong Ah Shin, Min Cheol Chang\",\"doi\":\"10.14245/ns.2347216.608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Precise knowledge regarding the mechanical stress applied to the intervertebral disc following each individual spine motion enables physicians and patients to understand how people with discogenic back pain should be guided in their exercises and which spine motions to specifically avoid. We created an intervertebral disc degeneration model and conducted a finite element (FE) analysis of loaded stresses following each spinal posture or motion.</p><p><strong>Methods: </strong>A 3-dimensional FE model of intervertebral disc degeneration at L4-5 was constructed. The intervertebral disc degeneration model was created according to the modified Dallas discogram scale. The von Mises stress and range of motion (ROM) regarding the intervertebral discs and the endplates were analyzed.</p><p><strong>Results: </strong>We observed that mechanical stresses loaded onto the intervertebral discs were similar during flexion, extension, and lateral bending, which were greater than those occurring during torsion. Based on the comparison among the grades divided by the modified Dallas discogram scale, the mechanical stress during extension was greater in grades 3-5 than it was during the others. During extension, the mechanical stress loaded onto the intervertebral disc and endplate was greatest in the posterior portion. Mechanical stresses loaded onto the intervertebral disc were greater in grades 3-5 compared to those in grades 0-2.</p><p><strong>Conclusion: </strong>Our findings suggest that it might be beneficial for patients experiencing discogenic back pain to maintain a neutral posture in their lumbar spine when engaging in daily activities and exercises, especially those suffering from significant intravertebral disc degeneration.</p>\",\"PeriodicalId\":19269,\"journal\":{\"name\":\"Neurospine\",\"volume\":\" \",\"pages\":\"536-543\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224725/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurospine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.14245/ns.2347216.608\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurospine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14245/ns.2347216.608","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:准确了解每个脊柱运动后施加在椎间盘上的机械应力,可使医生和患者了解应如何指导椎间盘源性背痛患者进行锻炼,以及应特别避免哪些脊柱运动。我们创建了一个椎间盘退化模型,并对每种脊柱姿势或运动后的加载应力进行了有限元(FE)分析:方法:构建了 L4-5 椎间盘退变的三维有限元模型。椎间盘退变模型是根据修改后的达拉斯椎间盘图尺度创建的。分析了椎间盘和终板的 Von Mises 应力和运动范围(ROM):我们观察到,椎间盘在屈曲、伸展和侧弯时承受的机械应力相似,而扭转时的应力更大。根据改良达拉斯椎间盘图量表划分的等级比较,3-5 级在伸展时的机械应力大于其他等级。在伸展过程中,椎间盘和终板后部承受的机械应力最大。与 0-2 级相比,3-5 级椎间盘所承受的机械应力更大:我们的研究结果表明,椎间盘源性腰痛患者在进行日常活动和锻炼时保持腰椎中立位姿势可能是有益的,尤其是那些患有严重椎间盘退变的患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finite Element Analysis of Stress Distribution and Range of Motion in Discogenic Back Pain.

Objective: Precise knowledge regarding the mechanical stress applied to the intervertebral disc following each individual spine motion enables physicians and patients to understand how people with discogenic back pain should be guided in their exercises and which spine motions to specifically avoid. We created an intervertebral disc degeneration model and conducted a finite element (FE) analysis of loaded stresses following each spinal posture or motion.

Methods: A 3-dimensional FE model of intervertebral disc degeneration at L4-5 was constructed. The intervertebral disc degeneration model was created according to the modified Dallas discogram scale. The von Mises stress and range of motion (ROM) regarding the intervertebral discs and the endplates were analyzed.

Results: We observed that mechanical stresses loaded onto the intervertebral discs were similar during flexion, extension, and lateral bending, which were greater than those occurring during torsion. Based on the comparison among the grades divided by the modified Dallas discogram scale, the mechanical stress during extension was greater in grades 3-5 than it was during the others. During extension, the mechanical stress loaded onto the intervertebral disc and endplate was greatest in the posterior portion. Mechanical stresses loaded onto the intervertebral disc were greater in grades 3-5 compared to those in grades 0-2.

Conclusion: Our findings suggest that it might be beneficial for patients experiencing discogenic back pain to maintain a neutral posture in their lumbar spine when engaging in daily activities and exercises, especially those suffering from significant intravertebral disc degeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurospine
Neurospine Multiple-
CiteScore
5.80
自引率
18.80%
发文量
93
审稿时长
10 weeks
期刊最新文献
A Self-Developed Mobility Augmented Reality System Versus Conventional X-rays for Spine Positioning in Intraspinal Tumor Surgery: A Case-Control Study. An Experimental Model for Fluid Dynamics and Pressures During Endoscopic Lumbar Discectomy. Application of the "Klotski Technique" in Cervical Ossification of the Posterior Longitudinal Ligament With En Bloc Type Dura Ossification. Artificial Intelligence Detection of Cervical Spine Fractures Using Convolutional Neural Network Models. Biomechanical Study of Atlanto-occipital Instability in Type II Basilar Invagination: A Finite Element Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1