{"title":"发现全身辐照白血病患者血浆中的辐射生物标志物","authors":"Rydlova Gabriela, Vozandychova Vera, Rehulka Pavel, Rehulkova Helena, Sirak Igor, Davidkova Marie, Markova Marketa, Myslivcova-Fucikova Alena, Tichy Ales","doi":"10.1667/RADE-23-00137.1","DOIUrl":null,"url":null,"abstract":"<p><p>The increased risk of acute large-scale radiological exposure for the world's population underlines the need for optimal radiation biomarkers. Ionizing radiation triggers a complex response by the genome, proteome, and metabolome, all of which have been reported as suitable indicators of radiation-induced damage in vivo. This study analyzed peripheral blood samples from total-body irradiation (TBI) leukemia patients through mass spectrometry (MS) to identify and quantify differentially regulated proteins in plasma before and after irradiation. In brief, samples were taken from 16 leukemic patients prior to and 24 h after TBI (2 × 2.0 Gy), processed with Tandem Mass Tag isobaric labelling kit (TMTpro-16-plex), and analyzed by MS. In parallel, label-free relative quantification was performed with a RP-nanoLC-ESI-MS/MS system in a Q-Exactive mass spectrometer. Protein identification was done in Proteome Discoverer v.2.2 platform (Thermo). Data is available via ProteomeXchange with identifier PXD043516. Using two different methods, we acquired two datasets of up-regulated (ratio ≥ 1.2) or down-regulated (ratio ≤ 0.83) plasmatic proteins 24 h after irradiation, identifying 356 and 346 proteins in the TMT-16plex and 285 and 308 label-free analyses, respectively (P ≤ 0.05). Combining the two datasets yielded 15 candidates with significant relation to gamma-radiation exposure. The majority of these proteins were associated with the inflammatory response and lipid metabolism. Subsequently, from these, five proteins showed the strongest potential as radiation biomarkers in humans (C-reactive protein, Alpha amylase 1A, Mannose-binding protein C, Phospholipid transfer protein, and Complement C5). These candidate biomarkers might have implications for practical biological dosimetry.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"418-428"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering the Radiation Biomarkers in the Plasma of Total-Body Irradiated Leukemia Patients.\",\"authors\":\"Rydlova Gabriela, Vozandychova Vera, Rehulka Pavel, Rehulkova Helena, Sirak Igor, Davidkova Marie, Markova Marketa, Myslivcova-Fucikova Alena, Tichy Ales\",\"doi\":\"10.1667/RADE-23-00137.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increased risk of acute large-scale radiological exposure for the world's population underlines the need for optimal radiation biomarkers. Ionizing radiation triggers a complex response by the genome, proteome, and metabolome, all of which have been reported as suitable indicators of radiation-induced damage in vivo. This study analyzed peripheral blood samples from total-body irradiation (TBI) leukemia patients through mass spectrometry (MS) to identify and quantify differentially regulated proteins in plasma before and after irradiation. In brief, samples were taken from 16 leukemic patients prior to and 24 h after TBI (2 × 2.0 Gy), processed with Tandem Mass Tag isobaric labelling kit (TMTpro-16-plex), and analyzed by MS. In parallel, label-free relative quantification was performed with a RP-nanoLC-ESI-MS/MS system in a Q-Exactive mass spectrometer. Protein identification was done in Proteome Discoverer v.2.2 platform (Thermo). Data is available via ProteomeXchange with identifier PXD043516. Using two different methods, we acquired two datasets of up-regulated (ratio ≥ 1.2) or down-regulated (ratio ≤ 0.83) plasmatic proteins 24 h after irradiation, identifying 356 and 346 proteins in the TMT-16plex and 285 and 308 label-free analyses, respectively (P ≤ 0.05). Combining the two datasets yielded 15 candidates with significant relation to gamma-radiation exposure. The majority of these proteins were associated with the inflammatory response and lipid metabolism. Subsequently, from these, five proteins showed the strongest potential as radiation biomarkers in humans (C-reactive protein, Alpha amylase 1A, Mannose-binding protein C, Phospholipid transfer protein, and Complement C5). These candidate biomarkers might have implications for practical biological dosimetry.</p>\",\"PeriodicalId\":20903,\"journal\":{\"name\":\"Radiation research\",\"volume\":\" \",\"pages\":\"418-428\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1667/RADE-23-00137.1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-23-00137.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Discovering the Radiation Biomarkers in the Plasma of Total-Body Irradiated Leukemia Patients.
The increased risk of acute large-scale radiological exposure for the world's population underlines the need for optimal radiation biomarkers. Ionizing radiation triggers a complex response by the genome, proteome, and metabolome, all of which have been reported as suitable indicators of radiation-induced damage in vivo. This study analyzed peripheral blood samples from total-body irradiation (TBI) leukemia patients through mass spectrometry (MS) to identify and quantify differentially regulated proteins in plasma before and after irradiation. In brief, samples were taken from 16 leukemic patients prior to and 24 h after TBI (2 × 2.0 Gy), processed with Tandem Mass Tag isobaric labelling kit (TMTpro-16-plex), and analyzed by MS. In parallel, label-free relative quantification was performed with a RP-nanoLC-ESI-MS/MS system in a Q-Exactive mass spectrometer. Protein identification was done in Proteome Discoverer v.2.2 platform (Thermo). Data is available via ProteomeXchange with identifier PXD043516. Using two different methods, we acquired two datasets of up-regulated (ratio ≥ 1.2) or down-regulated (ratio ≤ 0.83) plasmatic proteins 24 h after irradiation, identifying 356 and 346 proteins in the TMT-16plex and 285 and 308 label-free analyses, respectively (P ≤ 0.05). Combining the two datasets yielded 15 candidates with significant relation to gamma-radiation exposure. The majority of these proteins were associated with the inflammatory response and lipid metabolism. Subsequently, from these, five proteins showed the strongest potential as radiation biomarkers in humans (C-reactive protein, Alpha amylase 1A, Mannose-binding protein C, Phospholipid transfer protein, and Complement C5). These candidate biomarkers might have implications for practical biological dosimetry.
期刊介绍:
Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology
and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically
ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or
biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with
chemical agents contributing to the understanding of radiation effects.