Wanru Zhang, Xiali Qin, Kexin Zhang, Jiahui Ma, Mengfan Li, Ge Jin, Xiang Liu, Sinan Wang, Bangmao Wang, Jing Wu, Tianyu Liu, Weilong Zhong, Hailong Cao
{"title":"微生物代谢物三甲胺-N-氧化物通过抑制类雌激素 X 受体信号传导诱发肠癌。","authors":"Wanru Zhang, Xiali Qin, Kexin Zhang, Jiahui Ma, Mengfan Li, Ge Jin, Xiang Liu, Sinan Wang, Bangmao Wang, Jing Wu, Tianyu Liu, Weilong Zhong, Hailong Cao","doi":"10.1007/s13402-024-00920-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Microbial dysbiosis is considered as a hallmark of colorectal cancer (CRC). Trimethylamine-N-oxide (TMAO) as a gut microbiota-dependent metabolite has recently been implicated in CRC development. Nevertheless, evidence relating TMAO to intestinal carcinogenesis remains largely unexplored. Herein, we aimed to examine the crucial role of TMAO in CRC progression.</p><p><strong>Methods: </strong>Apc<sup>min/+</sup> mice were treated with TMAO or sterile PBS for 14 weeks. Intestinal tissues were isolated to evaluate the effects of TMAO on the malignant transformation of intestinal adenoma. The gut microbiota of mouse feces was detected by 16S rRNA sequencing analysis. HCT-116 cells were used to provide further evidence of TMAO on the progression of CRC.</p><p><strong>Results: </strong>TMAO administration increased tumor cell and stem cell proliferation, and decreased apoptosis, accompanied by DNA damage and gut barrier impairment. Gut microbiota analysis revealed that TMAO induced changes in the intestinal microbial community structure, manifested as reduced beneficial bacteria. Mechanistically, TMAO bound to farnesoid X receptor (FXR), thereby inhibiting the FXR-fibroblast growth factor 15 (FGF15) axis and activating the Wnt/β-catenin signaling pathway, whereas the FXR agonist GW4064 could blunt TMAO-induced Wnt/β-catenin pathway activation.</p><p><strong>Conclusion: </strong>The microbial metabolite TMAO can enhance intestinal carcinogenesis by inhibiting the FXR-FGF15 pathway.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"1183-1199"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial metabolite trimethylamine-N-oxide induces intestinal carcinogenesis through inhibiting farnesoid X receptor signaling.\",\"authors\":\"Wanru Zhang, Xiali Qin, Kexin Zhang, Jiahui Ma, Mengfan Li, Ge Jin, Xiang Liu, Sinan Wang, Bangmao Wang, Jing Wu, Tianyu Liu, Weilong Zhong, Hailong Cao\",\"doi\":\"10.1007/s13402-024-00920-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Microbial dysbiosis is considered as a hallmark of colorectal cancer (CRC). Trimethylamine-N-oxide (TMAO) as a gut microbiota-dependent metabolite has recently been implicated in CRC development. Nevertheless, evidence relating TMAO to intestinal carcinogenesis remains largely unexplored. Herein, we aimed to examine the crucial role of TMAO in CRC progression.</p><p><strong>Methods: </strong>Apc<sup>min/+</sup> mice were treated with TMAO or sterile PBS for 14 weeks. Intestinal tissues were isolated to evaluate the effects of TMAO on the malignant transformation of intestinal adenoma. The gut microbiota of mouse feces was detected by 16S rRNA sequencing analysis. HCT-116 cells were used to provide further evidence of TMAO on the progression of CRC.</p><p><strong>Results: </strong>TMAO administration increased tumor cell and stem cell proliferation, and decreased apoptosis, accompanied by DNA damage and gut barrier impairment. Gut microbiota analysis revealed that TMAO induced changes in the intestinal microbial community structure, manifested as reduced beneficial bacteria. Mechanistically, TMAO bound to farnesoid X receptor (FXR), thereby inhibiting the FXR-fibroblast growth factor 15 (FGF15) axis and activating the Wnt/β-catenin signaling pathway, whereas the FXR agonist GW4064 could blunt TMAO-induced Wnt/β-catenin pathway activation.</p><p><strong>Conclusion: </strong>The microbial metabolite TMAO can enhance intestinal carcinogenesis by inhibiting the FXR-FGF15 pathway.</p>\",\"PeriodicalId\":49223,\"journal\":{\"name\":\"Cellular Oncology\",\"volume\":\" \",\"pages\":\"1183-1199\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13402-024-00920-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-024-00920-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Microbial metabolite trimethylamine-N-oxide induces intestinal carcinogenesis through inhibiting farnesoid X receptor signaling.
Purpose: Microbial dysbiosis is considered as a hallmark of colorectal cancer (CRC). Trimethylamine-N-oxide (TMAO) as a gut microbiota-dependent metabolite has recently been implicated in CRC development. Nevertheless, evidence relating TMAO to intestinal carcinogenesis remains largely unexplored. Herein, we aimed to examine the crucial role of TMAO in CRC progression.
Methods: Apcmin/+ mice were treated with TMAO or sterile PBS for 14 weeks. Intestinal tissues were isolated to evaluate the effects of TMAO on the malignant transformation of intestinal adenoma. The gut microbiota of mouse feces was detected by 16S rRNA sequencing analysis. HCT-116 cells were used to provide further evidence of TMAO on the progression of CRC.
Results: TMAO administration increased tumor cell and stem cell proliferation, and decreased apoptosis, accompanied by DNA damage and gut barrier impairment. Gut microbiota analysis revealed that TMAO induced changes in the intestinal microbial community structure, manifested as reduced beneficial bacteria. Mechanistically, TMAO bound to farnesoid X receptor (FXR), thereby inhibiting the FXR-fibroblast growth factor 15 (FGF15) axis and activating the Wnt/β-catenin signaling pathway, whereas the FXR agonist GW4064 could blunt TMAO-induced Wnt/β-catenin pathway activation.
Conclusion: The microbial metabolite TMAO can enhance intestinal carcinogenesis by inhibiting the FXR-FGF15 pathway.
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.