{"title":"参与伤口愈合的基因综述","authors":"Mansoureh Farhangniya, Ali Samadikuchaksaraei","doi":"10.47176/mjiri.37.140","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gene therapy holds immense potential in the field of wound healing. However, we still do not recognize this procedure well enough to give oversight effectively to improve healing processes. A wide range of information has been achieved from the database for gene expression profiling by clinical trials, So we performed this study to gain a better understanding of the mechanisms behind wound healing and how it could be utilized to develop new therapies and treatments.</p><p><strong>Methods: </strong>In this study, we have been focusing on wound-healing genes, conducting a thorough review to explore the various genes and pathways involved in this process. For this purpose, a total of 320 articles were collected. All experimental studies, systematic or narrative reviews, studies and clinical trials included in this paper were searched on PubMed, Medline, Embase, Science Direct, and Scopus databases in English using the following terms: Wound Healing, wound regeneration, Gene Transfer, and Gene Therapy were used to search the mentioned databases. Unfortunately, we didn't find a large sample cohort study on this topic. A total amount of 330 articles were collected based on the guidelines of the PRISMA method. Both inclusion and exclusion criteria were settled.</p><p><strong>Results: </strong>During the last decade, different models of gene delivery have been introduced, which include viral transfection and Non-viral techniques. In this regard, TIMP-2 protein and VEGF mutants such as VEGF165, CARP, and HIF-1 are the genes that accelerate the rate of tissue repair.</p><p><strong>Conclusion: </strong>The process of wound healing is mainly related to the change of expression of genes that have a role in the parts of inflammation and repair. In our study, some of the most suitable genes involved in the wound-healing process are mentioned.</p>","PeriodicalId":18361,"journal":{"name":"Medical Journal of the Islamic Republic of Iran","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10843200/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Review of Genes Involved in Wound Healing.\",\"authors\":\"Mansoureh Farhangniya, Ali Samadikuchaksaraei\",\"doi\":\"10.47176/mjiri.37.140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Gene therapy holds immense potential in the field of wound healing. However, we still do not recognize this procedure well enough to give oversight effectively to improve healing processes. A wide range of information has been achieved from the database for gene expression profiling by clinical trials, So we performed this study to gain a better understanding of the mechanisms behind wound healing and how it could be utilized to develop new therapies and treatments.</p><p><strong>Methods: </strong>In this study, we have been focusing on wound-healing genes, conducting a thorough review to explore the various genes and pathways involved in this process. For this purpose, a total of 320 articles were collected. All experimental studies, systematic or narrative reviews, studies and clinical trials included in this paper were searched on PubMed, Medline, Embase, Science Direct, and Scopus databases in English using the following terms: Wound Healing, wound regeneration, Gene Transfer, and Gene Therapy were used to search the mentioned databases. Unfortunately, we didn't find a large sample cohort study on this topic. A total amount of 330 articles were collected based on the guidelines of the PRISMA method. Both inclusion and exclusion criteria were settled.</p><p><strong>Results: </strong>During the last decade, different models of gene delivery have been introduced, which include viral transfection and Non-viral techniques. In this regard, TIMP-2 protein and VEGF mutants such as VEGF165, CARP, and HIF-1 are the genes that accelerate the rate of tissue repair.</p><p><strong>Conclusion: </strong>The process of wound healing is mainly related to the change of expression of genes that have a role in the parts of inflammation and repair. In our study, some of the most suitable genes involved in the wound-healing process are mentioned.</p>\",\"PeriodicalId\":18361,\"journal\":{\"name\":\"Medical Journal of the Islamic Republic of Iran\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10843200/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Journal of the Islamic Republic of Iran\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47176/mjiri.37.140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Journal of the Islamic Republic of Iran","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47176/mjiri.37.140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Background: Gene therapy holds immense potential in the field of wound healing. However, we still do not recognize this procedure well enough to give oversight effectively to improve healing processes. A wide range of information has been achieved from the database for gene expression profiling by clinical trials, So we performed this study to gain a better understanding of the mechanisms behind wound healing and how it could be utilized to develop new therapies and treatments.
Methods: In this study, we have been focusing on wound-healing genes, conducting a thorough review to explore the various genes and pathways involved in this process. For this purpose, a total of 320 articles were collected. All experimental studies, systematic or narrative reviews, studies and clinical trials included in this paper were searched on PubMed, Medline, Embase, Science Direct, and Scopus databases in English using the following terms: Wound Healing, wound regeneration, Gene Transfer, and Gene Therapy were used to search the mentioned databases. Unfortunately, we didn't find a large sample cohort study on this topic. A total amount of 330 articles were collected based on the guidelines of the PRISMA method. Both inclusion and exclusion criteria were settled.
Results: During the last decade, different models of gene delivery have been introduced, which include viral transfection and Non-viral techniques. In this regard, TIMP-2 protein and VEGF mutants such as VEGF165, CARP, and HIF-1 are the genes that accelerate the rate of tissue repair.
Conclusion: The process of wound healing is mainly related to the change of expression of genes that have a role in the parts of inflammation and repair. In our study, some of the most suitable genes involved in the wound-healing process are mentioned.