数字乳腺断层合成的分类人工智能系统对普通放射医师和乳腺成像专科医师乳腺癌判读的影响。

IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Radiology-Artificial Intelligence Pub Date : 2024-03-01 DOI:10.1148/ryai.230137
Jiye G Kim, Bryan Haslam, Abdul Rahman Diab, Ashwin Sakhare, Giorgia Grisot, Hyunkwang Lee, Jacqueline Holt, Christoph I Lee, William Lotter, A Gregory Sorensen
{"title":"数字乳腺断层合成的分类人工智能系统对普通放射医师和乳腺成像专科医师乳腺癌判读的影响。","authors":"Jiye G Kim, Bryan Haslam, Abdul Rahman Diab, Ashwin Sakhare, Giorgia Grisot, Hyunkwang Lee, Jacqueline Holt, Christoph I Lee, William Lotter, A Gregory Sorensen","doi":"10.1148/ryai.230137","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To evaluate performance improvements of general radiologists and breast imaging specialists when interpreting a set of diverse digital breast tomosynthesis (DBT) examinations with the aid of a custom-built categorical artificial intelligence (AI) system. Materials and Methods A fully balanced multireader, multicase reader study was conducted to compare the performance of 18 radiologists (nine general radiologists and nine breast imaging specialists) reading 240 retrospectively collected screening DBT mammograms (mean patient age, 59.8 years ± 11.3 [SD]; 100% women), acquired between August 2016 and March 2019, with and without the aid of a custom-built categorical AI system. The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity across general radiologists and breast imaging specialists reading with versus without AI were assessed. Reader performance was also analyzed as a function of breast cancer characteristics and patient subgroups. Results Every radiologist demonstrated improved interpretation performance when reading with versus without AI, with an average AUC of 0.93 versus 0.87, demonstrating a difference in AUC of 0.06 (95% CI: 0.04, 0.08; <i>P</i> < .001). Improvement in AUC was observed for both general radiologists (difference of 0.08; <i>P</i> < .001) and breast imaging specialists (difference of 0.04; <i>P</i> < .001) and across all cancer characteristics (lesion type, lesion size, and pathology) and patient subgroups (race and ethnicity, age, and breast density) examined. Conclusion A categorical AI system helped improve overall radiologist interpretation performance of DBT screening mammograms for both general radiologists and breast imaging specialists and across various patient subgroups and breast cancer characteristics. <b>Keywords:</b> Computer-aided Diagnosis, Screening Mammography, Digital Breast Tomosynthesis, Breast Cancer, Screening, Convolutional Neural Network (CNN), Artificial Intelligence <i>Supplemental material is available for this article</i>. © RSNA, 2024.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982824/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of a Categorical AI System for Digital Breast Tomosynthesis on Breast Cancer Interpretation by Both General Radiologists and Breast Imaging Specialists.\",\"authors\":\"Jiye G Kim, Bryan Haslam, Abdul Rahman Diab, Ashwin Sakhare, Giorgia Grisot, Hyunkwang Lee, Jacqueline Holt, Christoph I Lee, William Lotter, A Gregory Sorensen\",\"doi\":\"10.1148/ryai.230137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Purpose To evaluate performance improvements of general radiologists and breast imaging specialists when interpreting a set of diverse digital breast tomosynthesis (DBT) examinations with the aid of a custom-built categorical artificial intelligence (AI) system. Materials and Methods A fully balanced multireader, multicase reader study was conducted to compare the performance of 18 radiologists (nine general radiologists and nine breast imaging specialists) reading 240 retrospectively collected screening DBT mammograms (mean patient age, 59.8 years ± 11.3 [SD]; 100% women), acquired between August 2016 and March 2019, with and without the aid of a custom-built categorical AI system. The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity across general radiologists and breast imaging specialists reading with versus without AI were assessed. Reader performance was also analyzed as a function of breast cancer characteristics and patient subgroups. Results Every radiologist demonstrated improved interpretation performance when reading with versus without AI, with an average AUC of 0.93 versus 0.87, demonstrating a difference in AUC of 0.06 (95% CI: 0.04, 0.08; <i>P</i> < .001). Improvement in AUC was observed for both general radiologists (difference of 0.08; <i>P</i> < .001) and breast imaging specialists (difference of 0.04; <i>P</i> < .001) and across all cancer characteristics (lesion type, lesion size, and pathology) and patient subgroups (race and ethnicity, age, and breast density) examined. Conclusion A categorical AI system helped improve overall radiologist interpretation performance of DBT screening mammograms for both general radiologists and breast imaging specialists and across various patient subgroups and breast cancer characteristics. <b>Keywords:</b> Computer-aided Diagnosis, Screening Mammography, Digital Breast Tomosynthesis, Breast Cancer, Screening, Convolutional Neural Network (CNN), Artificial Intelligence <i>Supplemental material is available for this article</i>. © RSNA, 2024.</p>\",\"PeriodicalId\":29787,\"journal\":{\"name\":\"Radiology-Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982824/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology-Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1148/ryai.230137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.230137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

"刚刚接受 "的论文经过同行评审,已被接受在《放射学》上发表:人工智能》上发表。这篇文章在以最终版本发表之前,还将经过校对、排版和校对审核。请注意,在制作最终校对稿的过程中,可能会发现一些可能影响内容的错误。目的 评估普通放射科医生和乳腺成像专家在借助定制的分类人工智能(AI)系统解释一组不同的数字乳腺断层合成(DBT)检查时的性能改进情况。材料与方法 开展了一项完全平衡的多阅读器多病例阅读器研究,比较了 18 位放射科医生(9 位普通放射科医生和 9 位乳腺成像专家)在阅读 240 张回顾性收集的筛查 DBT 乳房 X 光片(患者平均年龄为 59.8(SD,11.3)岁;均为女性)时的表现,这些 X 光片是在 2016 年 8 月至 2019 年 3 月期间获得的,有无借助定制的分类人工智能系统。评估了普通放射科医生和乳腺成像专家在使用和未使用人工智能的情况下的接收器操作特征曲线下面积(AUC)、灵敏度和特异性。此外,还根据乳腺癌特征和患者亚群对读片者的表现进行了分析。结果 每一位放射科医生在使用人工智能与不使用人工智能时的判读性能都有所提高,平均 AUC 为 0.93,而不使用人工智能时为 0.87,AUC 差异为 0.06(95% CI:0.04,0.08;P <.001)。普通放射科医生(差异为 0.08,P < .001)和乳腺成像专家(差异为 0.05,P < .001)的 AUC 均有所改善,而且在所有癌症特征(病变类型、病变大小和病理)和患者亚组(种族和民族、年龄和乳腺密度)检查中均是如此。结论 分类人工智能系统有助于提高普通放射科医生和乳腺成像专家对 DBT 乳房 X 光筛查的整体判读能力,并适用于不同的患者亚群和乳腺癌特征。©RSNA,2024。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of a Categorical AI System for Digital Breast Tomosynthesis on Breast Cancer Interpretation by Both General Radiologists and Breast Imaging Specialists.

Purpose To evaluate performance improvements of general radiologists and breast imaging specialists when interpreting a set of diverse digital breast tomosynthesis (DBT) examinations with the aid of a custom-built categorical artificial intelligence (AI) system. Materials and Methods A fully balanced multireader, multicase reader study was conducted to compare the performance of 18 radiologists (nine general radiologists and nine breast imaging specialists) reading 240 retrospectively collected screening DBT mammograms (mean patient age, 59.8 years ± 11.3 [SD]; 100% women), acquired between August 2016 and March 2019, with and without the aid of a custom-built categorical AI system. The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity across general radiologists and breast imaging specialists reading with versus without AI were assessed. Reader performance was also analyzed as a function of breast cancer characteristics and patient subgroups. Results Every radiologist demonstrated improved interpretation performance when reading with versus without AI, with an average AUC of 0.93 versus 0.87, demonstrating a difference in AUC of 0.06 (95% CI: 0.04, 0.08; P < .001). Improvement in AUC was observed for both general radiologists (difference of 0.08; P < .001) and breast imaging specialists (difference of 0.04; P < .001) and across all cancer characteristics (lesion type, lesion size, and pathology) and patient subgroups (race and ethnicity, age, and breast density) examined. Conclusion A categorical AI system helped improve overall radiologist interpretation performance of DBT screening mammograms for both general radiologists and breast imaging specialists and across various patient subgroups and breast cancer characteristics. Keywords: Computer-aided Diagnosis, Screening Mammography, Digital Breast Tomosynthesis, Breast Cancer, Screening, Convolutional Neural Network (CNN), Artificial Intelligence Supplemental material is available for this article. © RSNA, 2024.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
期刊最新文献
Integrated Deep Learning Model for the Detection, Segmentation, and Morphologic Analysis of Intracranial Aneurysms Using CT Angiography. RSNA 2023 Abdominal Trauma AI Challenge Review and Outcomes Analysis. SCIseg: Automatic Segmentation of Intramedullary Lesions in Spinal Cord Injury on T2-weighted MRI Scans. Combining Biology-based and MRI Data-driven Modeling to Predict Response to Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer. Optimizing Performance of Transformer-based Models for Fetal Brain MR Image Segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1