Marina Galchenkova , Alexandra Tolstikova , Bjarne Klopprogge , Janina Sprenger , Dominik Oberthuer , Wolfgang Brehm , Thomas A. White , Anton Barty , Henry N. Chapman , Oleksandr Yefanov , G. Williams (Editor)
{"title":"蛋白质序列晶体学的数据缩减","authors":"Marina Galchenkova , Alexandra Tolstikova , Bjarne Klopprogge , Janina Sprenger , Dominik Oberthuer , Wolfgang Brehm , Thomas A. White , Anton Barty , Henry N. Chapman , Oleksandr Yefanov , G. Williams (Editor)","doi":"10.1107/S205225252400054X","DOIUrl":null,"url":null,"abstract":"<div><p>Various approaches for lossless and lossy compression are evaluated, and suitable quality assessment metrics for serial crystallographic data – used in combination with lossy data reduction – are described.</p></div><div><p>Serial crystallography (SX) has become an established technique for protein structure determination, especially when dealing with small or radiation-sensitive crystals and investigating fast or irreversible protein dynamics. The advent of newly developed multi-megapixel X-ray area detectors, capable of capturing over 1000 images per second, has brought about substantial benefits. However, this advancement also entails a notable increase in the volume of collected data. Today, up to 2 PB of data per experiment could be easily obtained under efficient operating conditions. The combined costs associated with storing data from multiple experiments provide a compelling incentive to develop strategies that effectively reduce the amount of data stored on disk while maintaining the quality of scientific outcomes. Lossless data-compression methods are designed to preserve the information content of the data but often struggle to achieve a high compression ratio when applied to experimental data that contain noise. Conversely, lossy compression methods offer the potential to greatly reduce the data volume. Nonetheless, it is vital to thoroughly assess the impact of data quality and scientific outcomes when employing lossy compression, as it inherently involves discarding information. The evaluation of lossy compression effects on data requires proper data quality metrics. In our research, we assess various approaches for both lossless and lossy compression techniques applied to SX data, and equally importantly, we describe metrics suitable for evaluating SX data quality.</p></div>","PeriodicalId":14775,"journal":{"name":"IUCrJ","volume":"11 2","pages":"Pages 190-201"},"PeriodicalIF":2.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10916297/pdf/","citationCount":"0","resultStr":"{\"title\":\"Data reduction in protein serial crystallography\",\"authors\":\"Marina Galchenkova , Alexandra Tolstikova , Bjarne Klopprogge , Janina Sprenger , Dominik Oberthuer , Wolfgang Brehm , Thomas A. White , Anton Barty , Henry N. Chapman , Oleksandr Yefanov , G. Williams (Editor)\",\"doi\":\"10.1107/S205225252400054X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Various approaches for lossless and lossy compression are evaluated, and suitable quality assessment metrics for serial crystallographic data – used in combination with lossy data reduction – are described.</p></div><div><p>Serial crystallography (SX) has become an established technique for protein structure determination, especially when dealing with small or radiation-sensitive crystals and investigating fast or irreversible protein dynamics. The advent of newly developed multi-megapixel X-ray area detectors, capable of capturing over 1000 images per second, has brought about substantial benefits. However, this advancement also entails a notable increase in the volume of collected data. Today, up to 2 PB of data per experiment could be easily obtained under efficient operating conditions. The combined costs associated with storing data from multiple experiments provide a compelling incentive to develop strategies that effectively reduce the amount of data stored on disk while maintaining the quality of scientific outcomes. Lossless data-compression methods are designed to preserve the information content of the data but often struggle to achieve a high compression ratio when applied to experimental data that contain noise. Conversely, lossy compression methods offer the potential to greatly reduce the data volume. Nonetheless, it is vital to thoroughly assess the impact of data quality and scientific outcomes when employing lossy compression, as it inherently involves discarding information. The evaluation of lossy compression effects on data requires proper data quality metrics. In our research, we assess various approaches for both lossless and lossy compression techniques applied to SX data, and equally importantly, we describe metrics suitable for evaluating SX data quality.</p></div>\",\"PeriodicalId\":14775,\"journal\":{\"name\":\"IUCrJ\",\"volume\":\"11 2\",\"pages\":\"Pages 190-201\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10916297/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUCrJ\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2052252524000150\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUCrJ","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2052252524000150","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Various approaches for lossless and lossy compression are evaluated, and suitable quality assessment metrics for serial crystallographic data – used in combination with lossy data reduction – are described.
Serial crystallography (SX) has become an established technique for protein structure determination, especially when dealing with small or radiation-sensitive crystals and investigating fast or irreversible protein dynamics. The advent of newly developed multi-megapixel X-ray area detectors, capable of capturing over 1000 images per second, has brought about substantial benefits. However, this advancement also entails a notable increase in the volume of collected data. Today, up to 2 PB of data per experiment could be easily obtained under efficient operating conditions. The combined costs associated with storing data from multiple experiments provide a compelling incentive to develop strategies that effectively reduce the amount of data stored on disk while maintaining the quality of scientific outcomes. Lossless data-compression methods are designed to preserve the information content of the data but often struggle to achieve a high compression ratio when applied to experimental data that contain noise. Conversely, lossy compression methods offer the potential to greatly reduce the data volume. Nonetheless, it is vital to thoroughly assess the impact of data quality and scientific outcomes when employing lossy compression, as it inherently involves discarding information. The evaluation of lossy compression effects on data requires proper data quality metrics. In our research, we assess various approaches for both lossless and lossy compression techniques applied to SX data, and equally importantly, we describe metrics suitable for evaluating SX data quality.
期刊介绍:
IUCrJ is a new fully open-access peer-reviewed journal from the International Union of Crystallography (IUCr).
The journal will publish high-profile articles on all aspects of the sciences and technologies supported by the IUCr via its commissions, including emerging fields where structural results underpin the science reported in the article. Our aim is to make IUCrJ the natural home for high-quality structural science results. Chemists, biologists, physicists and material scientists will be actively encouraged to report their structural studies in IUCrJ.