衰老的肌肉骨骼成像。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-09-01 Epub Date: 2024-02-08 DOI:10.1007/s00256-024-04585-8
Heike E Daldrup-Link, Vidyani Suryadevara, Yasemin Tanyildizi, Kerem Nernekli, Jian-Hong Tang, Thomas J Meade
{"title":"衰老的肌肉骨骼成像。","authors":"Heike E Daldrup-Link, Vidyani Suryadevara, Yasemin Tanyildizi, Kerem Nernekli, Jian-Hong Tang, Thomas J Meade","doi":"10.1007/s00256-024-04585-8","DOIUrl":null,"url":null,"abstract":"<p><p>Senescent cells play a vital role in the pathogenesis of musculoskeletal (MSK) diseases, such as chronic inflammatory joint disorders, rheumatoid arthritis (RA), and osteoarthritis (OA). Cellular senescence in articular joints represents a response of local cells to persistent stress that leads to cell-cycle arrest and enhanced production of inflammatory cytokines, which in turn perpetuates joint damage and leads to significant morbidities in afflicted patients. It has been recently discovered that clearance of senescent cells by novel \"senolytic\" therapies can attenuate the chronic inflammatory microenvironment of RA and OA, preventing further disease progression and supporting healing processes. To identify patients who might benefit from these new senolytic therapies and monitor therapy response, there is an unmet need to identify and map senescent cells in articular joints and related musculoskeletal tissues. To fill this gap, new imaging biomarkers are being developed to detect and characterize senescent cells in human joints and musculoskeletal tissues. This review article will provide an overview of these efforts. New imaging biomarkers for senescence cells are expected to significantly improve the specificity of state-of-the-art imaging technologies for diagnosing musculoskeletal disorders.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303117/pdf/","citationCount":"0","resultStr":"{\"title\":\"Musculoskeletal imaging of senescence.\",\"authors\":\"Heike E Daldrup-Link, Vidyani Suryadevara, Yasemin Tanyildizi, Kerem Nernekli, Jian-Hong Tang, Thomas J Meade\",\"doi\":\"10.1007/s00256-024-04585-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Senescent cells play a vital role in the pathogenesis of musculoskeletal (MSK) diseases, such as chronic inflammatory joint disorders, rheumatoid arthritis (RA), and osteoarthritis (OA). Cellular senescence in articular joints represents a response of local cells to persistent stress that leads to cell-cycle arrest and enhanced production of inflammatory cytokines, which in turn perpetuates joint damage and leads to significant morbidities in afflicted patients. It has been recently discovered that clearance of senescent cells by novel \\\"senolytic\\\" therapies can attenuate the chronic inflammatory microenvironment of RA and OA, preventing further disease progression and supporting healing processes. To identify patients who might benefit from these new senolytic therapies and monitor therapy response, there is an unmet need to identify and map senescent cells in articular joints and related musculoskeletal tissues. To fill this gap, new imaging biomarkers are being developed to detect and characterize senescent cells in human joints and musculoskeletal tissues. This review article will provide an overview of these efforts. New imaging biomarkers for senescence cells are expected to significantly improve the specificity of state-of-the-art imaging technologies for diagnosing musculoskeletal disorders.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303117/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00256-024-04585-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00256-024-04585-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

衰老细胞在肌肉骨骼(MSK)疾病的发病机制中起着至关重要的作用,如慢性炎症性关节疾病、类风湿性关节炎(RA)和骨关节炎(OA)。关节中的细胞衰老是局部细胞对持续压力的一种反应,这种反应导致细胞周期停滞和炎性细胞因子的产生增强,进而使关节损伤永久化,并导致受影响的患者出现严重的病症。最近人们发现,通过新型 "衰老分解 "疗法清除衰老细胞可减轻RA和OA的慢性炎症微环境,防止疾病进一步恶化并支持愈合过程。为了识别可能从这些新型衰老疗法中获益的患者并监测治疗反应,识别和绘制关节和相关肌肉骨骼组织中的衰老细胞图的需求尚未得到满足。为了填补这一空白,目前正在开发新的成像生物标志物,以检测和描述人体关节和肌肉骨骼组织中的衰老细胞。这篇综述文章将概述这些工作。新的衰老细胞成像生物标志物有望大大提高最先进成像技术诊断肌肉骨骼疾病的特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Musculoskeletal imaging of senescence.

Senescent cells play a vital role in the pathogenesis of musculoskeletal (MSK) diseases, such as chronic inflammatory joint disorders, rheumatoid arthritis (RA), and osteoarthritis (OA). Cellular senescence in articular joints represents a response of local cells to persistent stress that leads to cell-cycle arrest and enhanced production of inflammatory cytokines, which in turn perpetuates joint damage and leads to significant morbidities in afflicted patients. It has been recently discovered that clearance of senescent cells by novel "senolytic" therapies can attenuate the chronic inflammatory microenvironment of RA and OA, preventing further disease progression and supporting healing processes. To identify patients who might benefit from these new senolytic therapies and monitor therapy response, there is an unmet need to identify and map senescent cells in articular joints and related musculoskeletal tissues. To fill this gap, new imaging biomarkers are being developed to detect and characterize senescent cells in human joints and musculoskeletal tissues. This review article will provide an overview of these efforts. New imaging biomarkers for senescence cells are expected to significantly improve the specificity of state-of-the-art imaging technologies for diagnosing musculoskeletal disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1