{"title":"论高倍性特征值和特征空间的不确定性量化","authors":"Jürgen Dölz, David Ebert","doi":"10.1137/22m1529324","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 1, Page 422-451, February 2024. <br/> Abstract. We consider generalized operator eigenvalue problems in variational form with random perturbations in the bilinear forms. This setting is motivated by variational forms of partial differential equations with random input data. The considered eigenpairs can be of higher but finite multiplicity. We investigate stochastic quantities of interest of the eigenpairs and discuss why, for multiplicity greater than 1, only the stochastic properties of the eigenspaces are meaningful, but not the ones of individual eigenpairs. To that end, we characterize the Fréchet derivatives of the eigenpairs with respect to the perturbation and provide a new linear characterization for eigenpairs of higher multiplicity. As a side result, we prove local analyticity of the eigenspaces. Based on the Fréchet derivatives of the eigenpairs we discuss a meaningful Monte Carlo sampling strategy for multiple eigenvalues and develop an uncertainty quantification perturbation approach. Numerical examples are presented to illustrate the theoretical results.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"25 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Uncertainty Quantification of Eigenvalues and Eigenspaces with Higher Multiplicity\",\"authors\":\"Jürgen Dölz, David Ebert\",\"doi\":\"10.1137/22m1529324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 1, Page 422-451, February 2024. <br/> Abstract. We consider generalized operator eigenvalue problems in variational form with random perturbations in the bilinear forms. This setting is motivated by variational forms of partial differential equations with random input data. The considered eigenpairs can be of higher but finite multiplicity. We investigate stochastic quantities of interest of the eigenpairs and discuss why, for multiplicity greater than 1, only the stochastic properties of the eigenspaces are meaningful, but not the ones of individual eigenpairs. To that end, we characterize the Fréchet derivatives of the eigenpairs with respect to the perturbation and provide a new linear characterization for eigenpairs of higher multiplicity. As a side result, we prove local analyticity of the eigenspaces. Based on the Fréchet derivatives of the eigenpairs we discuss a meaningful Monte Carlo sampling strategy for multiple eigenvalues and develop an uncertainty quantification perturbation approach. Numerical examples are presented to illustrate the theoretical results.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1529324\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1529324","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On Uncertainty Quantification of Eigenvalues and Eigenspaces with Higher Multiplicity
SIAM Journal on Numerical Analysis, Volume 62, Issue 1, Page 422-451, February 2024. Abstract. We consider generalized operator eigenvalue problems in variational form with random perturbations in the bilinear forms. This setting is motivated by variational forms of partial differential equations with random input data. The considered eigenpairs can be of higher but finite multiplicity. We investigate stochastic quantities of interest of the eigenpairs and discuss why, for multiplicity greater than 1, only the stochastic properties of the eigenspaces are meaningful, but not the ones of individual eigenpairs. To that end, we characterize the Fréchet derivatives of the eigenpairs with respect to the perturbation and provide a new linear characterization for eigenpairs of higher multiplicity. As a side result, we prove local analyticity of the eigenspaces. Based on the Fréchet derivatives of the eigenpairs we discuss a meaningful Monte Carlo sampling strategy for multiple eigenvalues and develop an uncertainty quantification perturbation approach. Numerical examples are presented to illustrate the theoretical results.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.