Juan Li, Zhiying Jiang, Shengjie Duan, Xingxing Zhu
{"title":"预测无痴呆症老年人认知功能衰退的多种早期生物标志物","authors":"Juan Li, Zhiying Jiang, Shengjie Duan, Xingxing Zhu","doi":"10.1177/08919887241232650","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Baseline olfactory impairment, poor performance on cognitive test, and medial temporal lobe atrophy are considered biomarkers for predicting future cognitive decline in dementia-free older adults. However, the combined effect of these predictors has not been fully investigated.</p><p><strong>Methods: </strong>A group of 110 participants without dementia were continuously recruited into this study, and underwent olfactory, cognitive tests and MRI scanning at baseline and 5-year follow-up. Olfactory function was assessed using the University of Pennsylvania Smell Identification Test (UPSIT). Participants were divided into the cognitive decliners and non-decliners.</p><p><strong>Results: </strong>Among 87 participants who completed the 5-year follow-up, cognitive decline was present in 32 cases and 55 remained stable. Compared with non-decliners, cognitive decliners presented lower scores on both the UPSIT and the Montreal Cognitive Assessment (MoCA), and smaller hippocampal volume at baseline (all <i>P</i> < .001). The logistic regression analysis revealed that lower scores on UPSIT and MoCA, and smaller hippocampal volume were strongly associated with subsequent cognitive decline, respectively (all <i>P</i> < .001). For the prediction of cognitive decline, lower score on UPSIT performed the sensitivity of 63.6% and specificity of 81.2%, lower score on MoCA with the sensitivity of 74.5% and specificity of 65.6%, smaller hippocampal volume with the sensitivity of 70.9% and specificity of 78.1%, respectively. Combining three predictors resulted in the sensitivity of 83.6% and specificity of 93.7%.</p><p><strong>Conclusions: </strong>The combination of olfactory test, cognitive test with structural MRI may enhance the predictive ability for future cognitive decline for dementia-free older adults.</p>","PeriodicalId":16028,"journal":{"name":"Journal of Geriatric Psychiatry and Neurology","volume":" ","pages":"395-402"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple Early Biomarkers to Predict Cognitive Decline in Dementia-Free Older Adults.\",\"authors\":\"Juan Li, Zhiying Jiang, Shengjie Duan, Xingxing Zhu\",\"doi\":\"10.1177/08919887241232650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Baseline olfactory impairment, poor performance on cognitive test, and medial temporal lobe atrophy are considered biomarkers for predicting future cognitive decline in dementia-free older adults. However, the combined effect of these predictors has not been fully investigated.</p><p><strong>Methods: </strong>A group of 110 participants without dementia were continuously recruited into this study, and underwent olfactory, cognitive tests and MRI scanning at baseline and 5-year follow-up. Olfactory function was assessed using the University of Pennsylvania Smell Identification Test (UPSIT). Participants were divided into the cognitive decliners and non-decliners.</p><p><strong>Results: </strong>Among 87 participants who completed the 5-year follow-up, cognitive decline was present in 32 cases and 55 remained stable. Compared with non-decliners, cognitive decliners presented lower scores on both the UPSIT and the Montreal Cognitive Assessment (MoCA), and smaller hippocampal volume at baseline (all <i>P</i> < .001). The logistic regression analysis revealed that lower scores on UPSIT and MoCA, and smaller hippocampal volume were strongly associated with subsequent cognitive decline, respectively (all <i>P</i> < .001). For the prediction of cognitive decline, lower score on UPSIT performed the sensitivity of 63.6% and specificity of 81.2%, lower score on MoCA with the sensitivity of 74.5% and specificity of 65.6%, smaller hippocampal volume with the sensitivity of 70.9% and specificity of 78.1%, respectively. Combining three predictors resulted in the sensitivity of 83.6% and specificity of 93.7%.</p><p><strong>Conclusions: </strong>The combination of olfactory test, cognitive test with structural MRI may enhance the predictive ability for future cognitive decline for dementia-free older adults.</p>\",\"PeriodicalId\":16028,\"journal\":{\"name\":\"Journal of Geriatric Psychiatry and Neurology\",\"volume\":\" \",\"pages\":\"395-402\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geriatric Psychiatry and Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08919887241232650\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geriatric Psychiatry and Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08919887241232650","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Multiple Early Biomarkers to Predict Cognitive Decline in Dementia-Free Older Adults.
Introduction: Baseline olfactory impairment, poor performance on cognitive test, and medial temporal lobe atrophy are considered biomarkers for predicting future cognitive decline in dementia-free older adults. However, the combined effect of these predictors has not been fully investigated.
Methods: A group of 110 participants without dementia were continuously recruited into this study, and underwent olfactory, cognitive tests and MRI scanning at baseline and 5-year follow-up. Olfactory function was assessed using the University of Pennsylvania Smell Identification Test (UPSIT). Participants were divided into the cognitive decliners and non-decliners.
Results: Among 87 participants who completed the 5-year follow-up, cognitive decline was present in 32 cases and 55 remained stable. Compared with non-decliners, cognitive decliners presented lower scores on both the UPSIT and the Montreal Cognitive Assessment (MoCA), and smaller hippocampal volume at baseline (all P < .001). The logistic regression analysis revealed that lower scores on UPSIT and MoCA, and smaller hippocampal volume were strongly associated with subsequent cognitive decline, respectively (all P < .001). For the prediction of cognitive decline, lower score on UPSIT performed the sensitivity of 63.6% and specificity of 81.2%, lower score on MoCA with the sensitivity of 74.5% and specificity of 65.6%, smaller hippocampal volume with the sensitivity of 70.9% and specificity of 78.1%, respectively. Combining three predictors resulted in the sensitivity of 83.6% and specificity of 93.7%.
Conclusions: The combination of olfactory test, cognitive test with structural MRI may enhance the predictive ability for future cognitive decline for dementia-free older adults.
期刊介绍:
Journal of Geriatric Psychiatry and Neurology (JGP) brings together original research, clinical reviews, and timely case reports on neuropsychiatric care of aging patients, including age-related biologic, neurologic, and psychiatric illnesses; psychosocial problems; forensic issues; and family care. The journal offers the latest peer-reviewed information on cognitive, mood, anxiety, addictive, and sleep disorders in older patients, as well as tested diagnostic tools and therapies.