{"title":"磁共振中的超极化标准。","authors":"Christian Bengs","doi":"10.1016/j.jmr.2024.107631","DOIUrl":null,"url":null,"abstract":"<div><p>Nuclear Magnetic Resonance (NMR) techniques display an inherently low sensitivity due to a small equilibrium magnetisation. Nowadays this issue is easily overcome through the use of hyperpolarisation methods. This however raises the question as to what precisely do we mean by “hyperpolarisation”. Recently a formal definition of hyperpolarisation has been given based on the von Neumann entropy of a system. Ideally this definition should conform with the general usage in the magnetic resonance community, where hyperpolarisation is often used synonymously with “larger” NMR signals. Within this article I show that an entropy-based hyperpolarisation criterion does not always conform with the general usage. Based on this observation I introduce an alternative hyperpolarisation criterion utilising the concept of <em>latent</em> polarisation, where latent polarisation is a measure of the highest possible amount of polarisation that may be extracted from a system. I show that a hyperpolarisation criterion based on latent polarisation correlates more strongly with the general usage within the magnetic resonance community. Ultimately however our results show that there are several possible notions of hyperpolarisation, and the choice depends upon the questions of interest.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"360 ","pages":"Article 107631"},"PeriodicalIF":2.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1090780724000156/pdfft?md5=de7d4151aa215dacdd90f6446e68d240&pid=1-s2.0-S1090780724000156-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hyperpolarisation criteria in magnetic resonance\",\"authors\":\"Christian Bengs\",\"doi\":\"10.1016/j.jmr.2024.107631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nuclear Magnetic Resonance (NMR) techniques display an inherently low sensitivity due to a small equilibrium magnetisation. Nowadays this issue is easily overcome through the use of hyperpolarisation methods. This however raises the question as to what precisely do we mean by “hyperpolarisation”. Recently a formal definition of hyperpolarisation has been given based on the von Neumann entropy of a system. Ideally this definition should conform with the general usage in the magnetic resonance community, where hyperpolarisation is often used synonymously with “larger” NMR signals. Within this article I show that an entropy-based hyperpolarisation criterion does not always conform with the general usage. Based on this observation I introduce an alternative hyperpolarisation criterion utilising the concept of <em>latent</em> polarisation, where latent polarisation is a measure of the highest possible amount of polarisation that may be extracted from a system. I show that a hyperpolarisation criterion based on latent polarisation correlates more strongly with the general usage within the magnetic resonance community. Ultimately however our results show that there are several possible notions of hyperpolarisation, and the choice depends upon the questions of interest.</p></div>\",\"PeriodicalId\":16267,\"journal\":{\"name\":\"Journal of magnetic resonance\",\"volume\":\"360 \",\"pages\":\"Article 107631\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1090780724000156/pdfft?md5=de7d4151aa215dacdd90f6446e68d240&pid=1-s2.0-S1090780724000156-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1090780724000156\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724000156","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Nuclear Magnetic Resonance (NMR) techniques display an inherently low sensitivity due to a small equilibrium magnetisation. Nowadays this issue is easily overcome through the use of hyperpolarisation methods. This however raises the question as to what precisely do we mean by “hyperpolarisation”. Recently a formal definition of hyperpolarisation has been given based on the von Neumann entropy of a system. Ideally this definition should conform with the general usage in the magnetic resonance community, where hyperpolarisation is often used synonymously with “larger” NMR signals. Within this article I show that an entropy-based hyperpolarisation criterion does not always conform with the general usage. Based on this observation I introduce an alternative hyperpolarisation criterion utilising the concept of latent polarisation, where latent polarisation is a measure of the highest possible amount of polarisation that may be extracted from a system. I show that a hyperpolarisation criterion based on latent polarisation correlates more strongly with the general usage within the magnetic resonance community. Ultimately however our results show that there are several possible notions of hyperpolarisation, and the choice depends upon the questions of interest.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.