{"title":"利用元基因组学方法发现独立于培养基的天然产品的最新进展","authors":"Yiping SHEN, Nan LIU, Zongqiang WANG","doi":"10.1016/S1875-5364(24)60585-6","DOIUrl":null,"url":null,"abstract":"<div><p>Natural products derived from bacterial sources have long been pivotal in the discovery of drug leads. However, the cultivation of only about 1% of bacteria in laboratory settings has left a significant portion of biosynthetic diversity hidden within the genomes of uncultured bacteria. Advances in sequencing technologies now enable the exploration of genetic material from these metagenomes through culture-independent methods. This approach involves extracting genetic sequences from environmental DNA and applying a hybrid methodology that combines functional screening, sequence tag-based homology screening, and bioinformatic-assisted chemical synthesis. Through this process, numerous valuable natural products have been identified and synthesized from previously uncharted metagenomic territories. This paper provides an overview of the recent advancements in the utilization of culture-independent techniques for the discovery of novel biosynthetic gene clusters and bioactive small molecules within metagenomic libraries.</p></div>","PeriodicalId":10002,"journal":{"name":"Chinese Journal of Natural Medicines","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in the culture-independent discovery of natural products using metagenomic approaches\",\"authors\":\"Yiping SHEN, Nan LIU, Zongqiang WANG\",\"doi\":\"10.1016/S1875-5364(24)60585-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Natural products derived from bacterial sources have long been pivotal in the discovery of drug leads. However, the cultivation of only about 1% of bacteria in laboratory settings has left a significant portion of biosynthetic diversity hidden within the genomes of uncultured bacteria. Advances in sequencing technologies now enable the exploration of genetic material from these metagenomes through culture-independent methods. This approach involves extracting genetic sequences from environmental DNA and applying a hybrid methodology that combines functional screening, sequence tag-based homology screening, and bioinformatic-assisted chemical synthesis. Through this process, numerous valuable natural products have been identified and synthesized from previously uncharted metagenomic territories. This paper provides an overview of the recent advancements in the utilization of culture-independent techniques for the discovery of novel biosynthetic gene clusters and bioactive small molecules within metagenomic libraries.</p></div>\",\"PeriodicalId\":10002,\"journal\":{\"name\":\"Chinese Journal of Natural Medicines\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Natural Medicines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875536424605856\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Natural Medicines","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875536424605856","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0
摘要
长期以来,从细菌中提取的天然产物一直是发现药物线索的关键。然而,由于实验室只培养了约 1% 的细菌,因此很大一部分生物合成多样性隐藏在未培养细菌的基因组中。随着测序技术的进步,现在可以通过不依赖培养的方法来探索这些元基因组中的遗传物质。这种方法包括从环境 DNA 中提取基因序列,并应用一种混合方法,将功能筛选、基于序列标签的同源性筛选和生物信息学辅助化学合成结合起来。通过这一过程,从以前未知的元基因组领域中鉴定并合成了大量有价值的天然产品。本文概述了利用独立于培养的技术发现元基因组文库中新型生物合成基因簇和生物活性小分子的最新进展。
Recent advances in the culture-independent discovery of natural products using metagenomic approaches
Natural products derived from bacterial sources have long been pivotal in the discovery of drug leads. However, the cultivation of only about 1% of bacteria in laboratory settings has left a significant portion of biosynthetic diversity hidden within the genomes of uncultured bacteria. Advances in sequencing technologies now enable the exploration of genetic material from these metagenomes through culture-independent methods. This approach involves extracting genetic sequences from environmental DNA and applying a hybrid methodology that combines functional screening, sequence tag-based homology screening, and bioinformatic-assisted chemical synthesis. Through this process, numerous valuable natural products have been identified and synthesized from previously uncharted metagenomic territories. This paper provides an overview of the recent advancements in the utilization of culture-independent techniques for the discovery of novel biosynthetic gene clusters and bioactive small molecules within metagenomic libraries.
期刊介绍:
The Chinese Journal of Natural Medicines (CJNM), founded and sponsored in May 2003 by China Pharmaceutical University and the Chinese Pharmaceutical Association, is devoted to communication among pharmaceutical and medical scientists interested in the advancement of Traditional Chinese Medicines (TCM). CJNM publishes articles relating to a broad spectrum of bioactive natural products, leading compounds and medicines derived from Traditional Chinese Medicines (TCM).
Topics covered by the journal are: Resources of Traditional Chinese Medicines; Interaction and complexity of prescription; Natural Products Chemistry (including structure modification, semi-and total synthesis, bio-transformation); Pharmacology of natural products and prescription (including pharmacokinetics and toxicology); Pharmaceutics and Analytical Methods of natural products.