{"title":"论半有限优化中解析的复杂性","authors":"Saugata Basu , Ali Mohammad-Nezhad","doi":"10.1016/j.aam.2024.102670","DOIUrl":null,"url":null,"abstract":"<div><p>It is well-known that the central path of semi-definite optimization, unlike linear optimization, has no analytic extension to <span><math><mi>μ</mi><mo>=</mo><mn>0</mn></math></span> in the absence of the strict complementarity condition. In this paper, we consider a reparametrization <span><math><mi>μ</mi><mo>↦</mo><msup><mrow><mi>μ</mi></mrow><mrow><mi>ρ</mi></mrow></msup></math></span>, with <em>ρ</em> being a positive integer, that recovers the analyticity of the central path at <span><math><mi>μ</mi><mo>=</mo><mn>0</mn></math></span>. We investigate the complexity of computing <em>ρ</em> using algorithmic real algebraic geometry and the theory of complex algebraic curves. We prove that the optimal <em>ρ</em> is bounded by <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>m</mi><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>)</mo></mrow></msup></math></span>, where <em>n</em> is the matrix size and <em>m</em> is the number of affine constraints. Our approach leads to a symbolic algorithm, based on the Newton-Puiseux algorithm, which computes a feasible <em>ρ</em> using <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>m</mi><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></msup></math></span> arithmetic operations.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the complexity of analyticity in semi-definite optimization\",\"authors\":\"Saugata Basu , Ali Mohammad-Nezhad\",\"doi\":\"10.1016/j.aam.2024.102670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is well-known that the central path of semi-definite optimization, unlike linear optimization, has no analytic extension to <span><math><mi>μ</mi><mo>=</mo><mn>0</mn></math></span> in the absence of the strict complementarity condition. In this paper, we consider a reparametrization <span><math><mi>μ</mi><mo>↦</mo><msup><mrow><mi>μ</mi></mrow><mrow><mi>ρ</mi></mrow></msup></math></span>, with <em>ρ</em> being a positive integer, that recovers the analyticity of the central path at <span><math><mi>μ</mi><mo>=</mo><mn>0</mn></math></span>. We investigate the complexity of computing <em>ρ</em> using algorithmic real algebraic geometry and the theory of complex algebraic curves. We prove that the optimal <em>ρ</em> is bounded by <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>m</mi><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>)</mo></mrow></msup></math></span>, where <em>n</em> is the matrix size and <em>m</em> is the number of affine constraints. Our approach leads to a symbolic algorithm, based on the Newton-Puiseux algorithm, which computes a feasible <em>ρ</em> using <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>m</mi><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></msup></math></span> arithmetic operations.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824000010\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000010","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On the complexity of analyticity in semi-definite optimization
It is well-known that the central path of semi-definite optimization, unlike linear optimization, has no analytic extension to in the absence of the strict complementarity condition. In this paper, we consider a reparametrization , with ρ being a positive integer, that recovers the analyticity of the central path at . We investigate the complexity of computing ρ using algorithmic real algebraic geometry and the theory of complex algebraic curves. We prove that the optimal ρ is bounded by , where n is the matrix size and m is the number of affine constraints. Our approach leads to a symbolic algorithm, based on the Newton-Puiseux algorithm, which computes a feasible ρ using arithmetic operations.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.