工程光子近红外光激活光热疗法纳米疫苗诱导的肿瘤微环境靶向重塑。

IF 4.2 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Nanomedicine : nanotechnology, biology, and medicine Pub Date : 2024-02-09 DOI:10.1016/j.nano.2024.102738
Karunanidhi Gowsalya MSc , Babu Rithisa MSc , Yuvaraj Haldorai PhD , Krishnamurthy Shanthi PhD , Raju Vivek PhD
{"title":"工程光子近红外光激活光热疗法纳米疫苗诱导的肿瘤微环境靶向重塑。","authors":"Karunanidhi Gowsalya MSc ,&nbsp;Babu Rithisa MSc ,&nbsp;Yuvaraj Haldorai PhD ,&nbsp;Krishnamurthy Shanthi PhD ,&nbsp;Raju Vivek PhD","doi":"10.1016/j.nano.2024.102738","DOIUrl":null,"url":null,"abstract":"<div><p>Tumor recurrence, which happens as a result of persisting tumor cells and minor lesions after treatments like surgery and chemotherapy, is a major problem in oncology. Herein, a strategy to combat this issue by utilize a theranostic nanovaccine composed of photonic HCuS. This nanovaccine aims to eradicate cancer cells and their traces while also preventing tumor recurrence via optimizing the photothermal immune impact. Successful membrane targeting allows for the introduction of new therapeutic agents into the tumor cells. Together with co-encapsulated Toll-Like Receptors (TLR7/8) agonist R848 for activating T cells and maturing DCs, the combined effects of HCuS and ICG function as photothermal agents that generate heat in the presence of NIR light. Photothermal-mediated immunotherapy with therapeutic modalities proved successful in killing tumor cells. By activating the immune system, this new photonic nanovaccine greatly increases immunogenic cell death (ICD), kills tumor cells, and prevents their recurrence.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"57 ","pages":"Article 102738"},"PeriodicalIF":4.2000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineered photonic near-infrared light activated photothermal theranostic nanovaccine induced targeted remodeling of tumor microenvironment\",\"authors\":\"Karunanidhi Gowsalya MSc ,&nbsp;Babu Rithisa MSc ,&nbsp;Yuvaraj Haldorai PhD ,&nbsp;Krishnamurthy Shanthi PhD ,&nbsp;Raju Vivek PhD\",\"doi\":\"10.1016/j.nano.2024.102738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tumor recurrence, which happens as a result of persisting tumor cells and minor lesions after treatments like surgery and chemotherapy, is a major problem in oncology. Herein, a strategy to combat this issue by utilize a theranostic nanovaccine composed of photonic HCuS. This nanovaccine aims to eradicate cancer cells and their traces while also preventing tumor recurrence via optimizing the photothermal immune impact. Successful membrane targeting allows for the introduction of new therapeutic agents into the tumor cells. Together with co-encapsulated Toll-Like Receptors (TLR7/8) agonist R848 for activating T cells and maturing DCs, the combined effects of HCuS and ICG function as photothermal agents that generate heat in the presence of NIR light. Photothermal-mediated immunotherapy with therapeutic modalities proved successful in killing tumor cells. By activating the immune system, this new photonic nanovaccine greatly increases immunogenic cell death (ICD), kills tumor cells, and prevents their recurrence.</p></div>\",\"PeriodicalId\":19050,\"journal\":{\"name\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"volume\":\"57 \",\"pages\":\"Article 102738\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1549963424000078\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963424000078","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤复发是肿瘤学中的一个主要问题,它是由于手术和化疗等治疗后肿瘤细胞和小病灶的持续存在而导致的。本文提出了一种利用由光子 HCuS 组成的治疗纳米疫苗来解决这一问题的策略。这种纳米疫苗旨在消灭癌细胞及其痕迹,同时通过优化光热免疫影响防止肿瘤复发。成功的膜靶向可将新的治疗药物引入肿瘤细胞。HCuS和ICG与共封装的Toll-Like Receptors (TLR7/8)激动剂R848一起用于激活T细胞和成熟的DC,其综合效应可作为光热剂,在近红外光的作用下产生热量。事实证明,光热介导的免疫疗法与治疗模式能成功杀死肿瘤细胞。通过激活免疫系统,这种新型光子纳米疫苗大大增加了免疫原性细胞死亡(ICD),杀死肿瘤细胞并防止其复发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineered photonic near-infrared light activated photothermal theranostic nanovaccine induced targeted remodeling of tumor microenvironment

Tumor recurrence, which happens as a result of persisting tumor cells and minor lesions after treatments like surgery and chemotherapy, is a major problem in oncology. Herein, a strategy to combat this issue by utilize a theranostic nanovaccine composed of photonic HCuS. This nanovaccine aims to eradicate cancer cells and their traces while also preventing tumor recurrence via optimizing the photothermal immune impact. Successful membrane targeting allows for the introduction of new therapeutic agents into the tumor cells. Together with co-encapsulated Toll-Like Receptors (TLR7/8) agonist R848 for activating T cells and maturing DCs, the combined effects of HCuS and ICG function as photothermal agents that generate heat in the presence of NIR light. Photothermal-mediated immunotherapy with therapeutic modalities proved successful in killing tumor cells. By activating the immune system, this new photonic nanovaccine greatly increases immunogenic cell death (ICD), kills tumor cells, and prevents their recurrence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.10
自引率
0.00%
发文量
133
审稿时长
42 days
期刊介绍: The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine. Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.
期刊最新文献
Corrigendum to "Redox-responsive micelles from disulfide bond-bridged hyaluronic acid-tocopherol succinate for the treatment of melanoma" [Nanomed.: Nanotechnol. Biol. Med. 14/3 (2018) 713-723]. Exploiting novel placental homing peptides for targeted drug delivery in breast Cancer. Machine learning-driven Raman spectroscopy: A novel approach to lipid profiling in diabetic kidney disease. Soluble microneedle acupuncture patches containing melittin liposomes for the percutaneous treatment of rheumatoid arthritis. Determination diabetes mellitus disease markers in tear fluid by photothermal AFM-IR analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1