协同控制锌离子和细胞因子释放的多功能纳米涂层,用于精确调节血管内膜重建。

IF 4.2 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Nanomedicine : nanotechnology, biology, and medicine Pub Date : 2024-02-08 DOI:10.1016/j.nano.2024.102739
Jianying Tan PhD , Huanran Wang Master's degree in engineering , Sainan Liu Master's degree in engineering , Li Li PhD , Hengquan Liu PhD , Tao Liu PhD , Junying Chen PhD
{"title":"协同控制锌离子和细胞因子释放的多功能纳米涂层,用于精确调节血管内膜重建。","authors":"Jianying Tan PhD ,&nbsp;Huanran Wang Master's degree in engineering ,&nbsp;Sainan Liu Master's degree in engineering ,&nbsp;Li Li PhD ,&nbsp;Hengquan Liu PhD ,&nbsp;Tao Liu PhD ,&nbsp;Junying Chen PhD","doi":"10.1016/j.nano.2024.102739","DOIUrl":null,"url":null,"abstract":"<div><p>Vascular stent implantation remains the major therapeutic method for cardiovascular diseases currently. We here introduced crucial biological functional biological function factors (SDF-1α, VEGF) and vital metal ions (Zn<sup>2+</sup>) into the stent surface to explore their synergistic effect in the microenvironment. The combination of the different factors is known to effectively regulate cellular inflammatory response and selectively regulate cell biological behavior. Meanwhile, in the implemented method, VEGF and Zn<sup>2+</sup> were loaded into heparin and poly-<span>l</span>-lysine (Hep-PLL) nanoparticles, ensuring a controlled release of functional molecules with a multi-factor synergistic effect and excellent biological functions <em>in vitro</em> and <em>in vivo</em>. Notably, after 150 days of implantation of the modified stent in rabbits, a thin and smooth new intima was obtained. This study offers a new idea for constructing a modified surface microenvironment and promoting tissue repair.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"57 ","pages":"Article 102739"},"PeriodicalIF":4.2000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional nanocoatings with synergistic controlled release of zinc ions and cytokines for precise modulation of vascular intimal reconstruction\",\"authors\":\"Jianying Tan PhD ,&nbsp;Huanran Wang Master's degree in engineering ,&nbsp;Sainan Liu Master's degree in engineering ,&nbsp;Li Li PhD ,&nbsp;Hengquan Liu PhD ,&nbsp;Tao Liu PhD ,&nbsp;Junying Chen PhD\",\"doi\":\"10.1016/j.nano.2024.102739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vascular stent implantation remains the major therapeutic method for cardiovascular diseases currently. We here introduced crucial biological functional biological function factors (SDF-1α, VEGF) and vital metal ions (Zn<sup>2+</sup>) into the stent surface to explore their synergistic effect in the microenvironment. The combination of the different factors is known to effectively regulate cellular inflammatory response and selectively regulate cell biological behavior. Meanwhile, in the implemented method, VEGF and Zn<sup>2+</sup> were loaded into heparin and poly-<span>l</span>-lysine (Hep-PLL) nanoparticles, ensuring a controlled release of functional molecules with a multi-factor synergistic effect and excellent biological functions <em>in vitro</em> and <em>in vivo</em>. Notably, after 150 days of implantation of the modified stent in rabbits, a thin and smooth new intima was obtained. This study offers a new idea for constructing a modified surface microenvironment and promoting tissue repair.</p></div>\",\"PeriodicalId\":19050,\"journal\":{\"name\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"volume\":\"57 \",\"pages\":\"Article 102739\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S154996342400008X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S154996342400008X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

血管支架植入术仍是目前治疗心血管疾病的主要方法。我们在此将重要的生物功能因子(SDF-1α、VEGF)和重要的金属离子(Zn2+)引入支架表面,探索它们在微环境中的协同作用。众所周知,不同因子的组合能有效调节细胞炎症反应,并选择性地调节细胞生物学行为。同时,在实施的方法中,VEGF 和 Zn2+ 被载入肝素和聚赖氨酸(Hep-PLL)纳米颗粒中,确保了功能分子的可控释放,具有多因素协同效应和优异的体内外生物功能。值得注意的是,改良支架在兔子体内植入 150 天后,可获得薄而光滑的新内膜。这项研究为构建改良表面微环境和促进组织修复提供了新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multifunctional nanocoatings with synergistic controlled release of zinc ions and cytokines for precise modulation of vascular intimal reconstruction

Vascular stent implantation remains the major therapeutic method for cardiovascular diseases currently. We here introduced crucial biological functional biological function factors (SDF-1α, VEGF) and vital metal ions (Zn2+) into the stent surface to explore their synergistic effect in the microenvironment. The combination of the different factors is known to effectively regulate cellular inflammatory response and selectively regulate cell biological behavior. Meanwhile, in the implemented method, VEGF and Zn2+ were loaded into heparin and poly-l-lysine (Hep-PLL) nanoparticles, ensuring a controlled release of functional molecules with a multi-factor synergistic effect and excellent biological functions in vitro and in vivo. Notably, after 150 days of implantation of the modified stent in rabbits, a thin and smooth new intima was obtained. This study offers a new idea for constructing a modified surface microenvironment and promoting tissue repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.10
自引率
0.00%
发文量
133
审稿时长
42 days
期刊介绍: The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine. Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.
期刊最新文献
Comparison of cholesterol transport capacity of peptide- and polymer-based lipid Nanodiscs. Retraction notice to “In vitro angiogenic performance and in vivo brain targeting of magnetized endothelial progenitor cells for neurorepair therapies” [Nanomedicine: Nanotechnology, Biology and Medicine 10/1 (2014) 225–234] Facile fabrication of nano-bioactive glass functionalized blended hydrogel with nucleus pulposus-derived MSCs to improve regeneration potential in treatment of disc degeneration by in vivo rat model. Micellar curcumol for maintenance therapy of ovarian cancer by activating the FOXO3a Conceptual rationale for the use of chemically modified nanocomposites for active influence on atherosclerosis using the greater omentum model of experimental animals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1