揭开芳烃生产行业挥发性有机化合物的面纱:揭开对环境和健康的影响

IF 3.8 Q2 ENVIRONMENTAL SCIENCES Atmospheric Environment: X Pub Date : 2024-01-01 DOI:10.1016/j.aeaoa.2024.100238
Jutarat Keawboonchu , Sarawut Thepanondh , Vanitchaya Kultan , Nattaporn Pinthong , Wissawa Malakan , Shinya Echigo , Suchon Chatphanchan
{"title":"揭开芳烃生产行业挥发性有机化合物的面纱:揭开对环境和健康的影响","authors":"Jutarat Keawboonchu ,&nbsp;Sarawut Thepanondh ,&nbsp;Vanitchaya Kultan ,&nbsp;Nattaporn Pinthong ,&nbsp;Wissawa Malakan ,&nbsp;Shinya Echigo ,&nbsp;Suchon Chatphanchan","doi":"10.1016/j.aeaoa.2024.100238","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we conducted a thorough investigation into the critical volatile organic compounds (VOCs), namely benzene, toluene, and xylenes (BTX), originating from the aromatic production industry. Our primary goal was to assess their spatial dispersion and source contribution, providing a comprehensive evaluation of their environmental and health impacts. The aromatic plant's average annual benzene concentrations were found to be compliant with Thailand's standard. However, xylenes did not meet the mandatory standards and emerged as the dominant species in the surrounding vicinity, with both maximum hourly and average annual concentrations exceeding the limits. Emission rate, meteorological characteristics, and topographical levels were identified as key factors affecting pollutant dispersion. The study utilized the maximum incremental reactivity (MIR) method to evaluate environmental risk assessment by calculating the ozone formation potential (OFP) of BTX. The total OFPs in the environment contributed by the aromatic plant ranged from 2.64 to 18.75 μg/m<sup>3</sup>. Xylenes emerged as the primary contributor to OFP concentrations at all receptor sites, accounting for 93–95% of the total OFP due to its high concentration and reactivity, followed by benzene and toluene. Storage tanks and wastewater treatment systems were identified as the main sources of ozone formation for benzene, toluene, and xylenes. Health risk assessment indicates an acceptable chronic hazard quotient (HQ) for each target organ system. For cancer risk, benzene slightly exceeds 10–6 at all receptors, necessitating consideration of pollutant concentrations, exposure duration, and other factors. The study emphasizes the importance of a comprehensive ambient monitoring network and updated emission inventory for effective air pollution management for the petrochemical enterprise, particularly in industrial areas.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"21 ","pages":"Article 100238"},"PeriodicalIF":3.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000054/pdfft?md5=cba80f193328ab8f3c7f8a0df2847d07&pid=1-s2.0-S2590162124000054-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Unmasking the aromatic production Industry's VOCs: Unraveling environmental and health impacts\",\"authors\":\"Jutarat Keawboonchu ,&nbsp;Sarawut Thepanondh ,&nbsp;Vanitchaya Kultan ,&nbsp;Nattaporn Pinthong ,&nbsp;Wissawa Malakan ,&nbsp;Shinya Echigo ,&nbsp;Suchon Chatphanchan\",\"doi\":\"10.1016/j.aeaoa.2024.100238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we conducted a thorough investigation into the critical volatile organic compounds (VOCs), namely benzene, toluene, and xylenes (BTX), originating from the aromatic production industry. Our primary goal was to assess their spatial dispersion and source contribution, providing a comprehensive evaluation of their environmental and health impacts. The aromatic plant's average annual benzene concentrations were found to be compliant with Thailand's standard. However, xylenes did not meet the mandatory standards and emerged as the dominant species in the surrounding vicinity, with both maximum hourly and average annual concentrations exceeding the limits. Emission rate, meteorological characteristics, and topographical levels were identified as key factors affecting pollutant dispersion. The study utilized the maximum incremental reactivity (MIR) method to evaluate environmental risk assessment by calculating the ozone formation potential (OFP) of BTX. The total OFPs in the environment contributed by the aromatic plant ranged from 2.64 to 18.75 μg/m<sup>3</sup>. Xylenes emerged as the primary contributor to OFP concentrations at all receptor sites, accounting for 93–95% of the total OFP due to its high concentration and reactivity, followed by benzene and toluene. Storage tanks and wastewater treatment systems were identified as the main sources of ozone formation for benzene, toluene, and xylenes. Health risk assessment indicates an acceptable chronic hazard quotient (HQ) for each target organ system. For cancer risk, benzene slightly exceeds 10–6 at all receptors, necessitating consideration of pollutant concentrations, exposure duration, and other factors. The study emphasizes the importance of a comprehensive ambient monitoring network and updated emission inventory for effective air pollution management for the petrochemical enterprise, particularly in industrial areas.</p></div>\",\"PeriodicalId\":37150,\"journal\":{\"name\":\"Atmospheric Environment: X\",\"volume\":\"21 \",\"pages\":\"Article 100238\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590162124000054/pdfft?md5=cba80f193328ab8f3c7f8a0df2847d07&pid=1-s2.0-S2590162124000054-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590162124000054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590162124000054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们对源自芳烃生产行业的关键挥发性有机化合物(VOCs),即苯、甲苯和二甲苯(BTX)进行了深入调查。我们的主要目标是评估它们的空间扩散和来源贡献,对其环境和健康影响进行全面评估。结果发现,芳烃工厂的年均苯浓度符合泰国标准。然而,二甲苯未达到强制性标准,并成为周边地区的主要污染物,其最大小时浓度和年均浓度均超过了限值。排放率、气象特征和地形水平被认为是影响污染物扩散的关键因素。研究采用最大增量反应性(MIR)方法,通过计算 BTX 的臭氧形成潜能值(OFP)来评估环境风险。芳香植物在环境中产生的臭氧形成潜能值介于 2.64 至 18.75 μg/m3 之间。由于二甲苯的高浓度和高反应性,二甲苯成为所有受体点 OFP 浓度的主要贡献者,占 OFP 总量的 93-95%,其次是苯和甲苯。储罐和废水处理系统是苯、甲苯和二甲苯形成臭氧的主要来源。健康风险评估表明,每个目标器官系统的慢性危害商数 (HQ) 都是可以接受的。就癌症风险而言,苯在所有受体中的浓度都略高于 10-6,因此有必要考虑污染物浓度、接触时间和其他因素。这项研究强调了建立全面的环境监测网络和更新排放清单对石化企业(尤其是工业区)进行有效空气污染管理的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unmasking the aromatic production Industry's VOCs: Unraveling environmental and health impacts

In this study, we conducted a thorough investigation into the critical volatile organic compounds (VOCs), namely benzene, toluene, and xylenes (BTX), originating from the aromatic production industry. Our primary goal was to assess their spatial dispersion and source contribution, providing a comprehensive evaluation of their environmental and health impacts. The aromatic plant's average annual benzene concentrations were found to be compliant with Thailand's standard. However, xylenes did not meet the mandatory standards and emerged as the dominant species in the surrounding vicinity, with both maximum hourly and average annual concentrations exceeding the limits. Emission rate, meteorological characteristics, and topographical levels were identified as key factors affecting pollutant dispersion. The study utilized the maximum incremental reactivity (MIR) method to evaluate environmental risk assessment by calculating the ozone formation potential (OFP) of BTX. The total OFPs in the environment contributed by the aromatic plant ranged from 2.64 to 18.75 μg/m3. Xylenes emerged as the primary contributor to OFP concentrations at all receptor sites, accounting for 93–95% of the total OFP due to its high concentration and reactivity, followed by benzene and toluene. Storage tanks and wastewater treatment systems were identified as the main sources of ozone formation for benzene, toluene, and xylenes. Health risk assessment indicates an acceptable chronic hazard quotient (HQ) for each target organ system. For cancer risk, benzene slightly exceeds 10–6 at all receptors, necessitating consideration of pollutant concentrations, exposure duration, and other factors. The study emphasizes the importance of a comprehensive ambient monitoring network and updated emission inventory for effective air pollution management for the petrochemical enterprise, particularly in industrial areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Environment: X
Atmospheric Environment: X Environmental Science-Environmental Science (all)
CiteScore
8.00
自引率
0.00%
发文量
47
审稿时长
12 weeks
期刊最新文献
Quantification of braking particles emission by PIV analysis — Application on railway Emission location affects impacts on atmosphere and climate from alternative fuels for Norwegian domestic aviation Variability of aerosol particle concentrations from tyre and brake wear emissions in an urban area Detection and analysis of ship emissions using single-particle mass spectrometry: A land-based field study in the port of rostock, Germany Comparison of global air pollution impacts across horizontal resolutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1