Wouter-Jan Rappel, Tina Baykaner, Junaid Zaman, Prasanth Ganesan, Albert J Rogers, Sanjiv M Narayan
{"title":"人类心房颤动过程中空间一致的螺旋波活动","authors":"Wouter-Jan Rappel, Tina Baykaner, Junaid Zaman, Prasanth Ganesan, Albert J Rogers, Sanjiv M Narayan","doi":"10.1161/CIRCEP.123.012041","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Atrial fibrillation is the most common cardiac arrhythmia in the world and increases the risk for stroke and morbidity. During atrial fibrillation, the electric activation fronts are no longer coherently propagating through the tissue and, instead, show rotational activity, consistent with spiral wave activation, focal activity, collision, or partial versions of these spatial patterns. An unexplained phenomenon is that although simulations of cardiac models abundantly demonstrate spiral waves, clinical recordings often show only intermittent spiral wave activity.</p><p><strong>Methods: </strong>In silico data were generated using simulations in which spiral waves were continuously created and annihilated and in simulations in which a spiral wave was intermittently trapped at a heterogeneity. Clinically, spatio-temporal activation maps were constructed using 60 s recordings from a 64 electrode catheter within the atrium of N=34 patients (n=24 persistent atrial fibrillation). The location of clockwise and counterclockwise rotating spiral waves was quantified and all intervals during which these spiral waves were present were determined. For each interval, the angle of rotation as a function of time was computed and used to determine whether the spiral wave returned in step or changed phase at the start of each interval.</p><p><strong>Results: </strong>In both simulations, spiral waves did not come back in phase and were out of step.\" In contrast, spiral waves returned in step in the majority (68%; <i>P</i>=0.05) of patients. Thus, the intermittently observed rotational activity in these patients is due to a temporally and spatially conserved spiral wave and not due to ones that are newly created at the onset of each interval.</p><p><strong>Conclusions: </strong>Intermittency of spiral wave activity represents conserved spiral wave activity of long, but interrupted duration or transient spiral activity, in the majority of patients. This finding could have important ramifications for identifying clinically important forms of atrial fibrillation and in guiding treatment.</p>","PeriodicalId":10319,"journal":{"name":"Circulation. Arrhythmia and electrophysiology","volume":" ","pages":"e012041"},"PeriodicalIF":9.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950516/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spatially Conserved Spiral Wave Activity During Human Atrial Fibrillation.\",\"authors\":\"Wouter-Jan Rappel, Tina Baykaner, Junaid Zaman, Prasanth Ganesan, Albert J Rogers, Sanjiv M Narayan\",\"doi\":\"10.1161/CIRCEP.123.012041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Atrial fibrillation is the most common cardiac arrhythmia in the world and increases the risk for stroke and morbidity. During atrial fibrillation, the electric activation fronts are no longer coherently propagating through the tissue and, instead, show rotational activity, consistent with spiral wave activation, focal activity, collision, or partial versions of these spatial patterns. An unexplained phenomenon is that although simulations of cardiac models abundantly demonstrate spiral waves, clinical recordings often show only intermittent spiral wave activity.</p><p><strong>Methods: </strong>In silico data were generated using simulations in which spiral waves were continuously created and annihilated and in simulations in which a spiral wave was intermittently trapped at a heterogeneity. Clinically, spatio-temporal activation maps were constructed using 60 s recordings from a 64 electrode catheter within the atrium of N=34 patients (n=24 persistent atrial fibrillation). The location of clockwise and counterclockwise rotating spiral waves was quantified and all intervals during which these spiral waves were present were determined. For each interval, the angle of rotation as a function of time was computed and used to determine whether the spiral wave returned in step or changed phase at the start of each interval.</p><p><strong>Results: </strong>In both simulations, spiral waves did not come back in phase and were out of step.\\\" In contrast, spiral waves returned in step in the majority (68%; <i>P</i>=0.05) of patients. Thus, the intermittently observed rotational activity in these patients is due to a temporally and spatially conserved spiral wave and not due to ones that are newly created at the onset of each interval.</p><p><strong>Conclusions: </strong>Intermittency of spiral wave activity represents conserved spiral wave activity of long, but interrupted duration or transient spiral activity, in the majority of patients. This finding could have important ramifications for identifying clinically important forms of atrial fibrillation and in guiding treatment.</p>\",\"PeriodicalId\":10319,\"journal\":{\"name\":\"Circulation. Arrhythmia and electrophysiology\",\"volume\":\" \",\"pages\":\"e012041\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950516/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation. Arrhythmia and electrophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCEP.123.012041\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation. Arrhythmia and electrophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCEP.123.012041","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Spatially Conserved Spiral Wave Activity During Human Atrial Fibrillation.
Background: Atrial fibrillation is the most common cardiac arrhythmia in the world and increases the risk for stroke and morbidity. During atrial fibrillation, the electric activation fronts are no longer coherently propagating through the tissue and, instead, show rotational activity, consistent with spiral wave activation, focal activity, collision, or partial versions of these spatial patterns. An unexplained phenomenon is that although simulations of cardiac models abundantly demonstrate spiral waves, clinical recordings often show only intermittent spiral wave activity.
Methods: In silico data were generated using simulations in which spiral waves were continuously created and annihilated and in simulations in which a spiral wave was intermittently trapped at a heterogeneity. Clinically, spatio-temporal activation maps were constructed using 60 s recordings from a 64 electrode catheter within the atrium of N=34 patients (n=24 persistent atrial fibrillation). The location of clockwise and counterclockwise rotating spiral waves was quantified and all intervals during which these spiral waves were present were determined. For each interval, the angle of rotation as a function of time was computed and used to determine whether the spiral wave returned in step or changed phase at the start of each interval.
Results: In both simulations, spiral waves did not come back in phase and were out of step." In contrast, spiral waves returned in step in the majority (68%; P=0.05) of patients. Thus, the intermittently observed rotational activity in these patients is due to a temporally and spatially conserved spiral wave and not due to ones that are newly created at the onset of each interval.
Conclusions: Intermittency of spiral wave activity represents conserved spiral wave activity of long, but interrupted duration or transient spiral activity, in the majority of patients. This finding could have important ramifications for identifying clinically important forms of atrial fibrillation and in guiding treatment.
期刊介绍:
Circulation: Arrhythmia and Electrophysiology is a journal dedicated to the study and application of clinical cardiac electrophysiology. It covers a wide range of topics including the diagnosis and treatment of cardiac arrhythmias, as well as research in this field. The journal accepts various types of studies, including observational research, clinical trials, epidemiological studies, and advancements in translational research.