基于NF-κB通路探讨miRNA-146a/TAB1调控溃疡性结肠炎细胞凋亡和炎症的机制

IF 2.2 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Current molecular medicine Pub Date : 2024-02-12 DOI:10.2174/0115665240273807231122052445
Xiaoying Xia, Qian Yang, Xue Han, Yulin Du, Shujun Guo, Mengqing Hua, Fang Fang, Zhigang Ma, Hua Ma, Hui Yuan, Wenjing Tian, Zebang Ding, Yanan Duan, Qi Huo, Yao Li
{"title":"基于NF-κB通路探讨miRNA-146a/TAB1调控溃疡性结肠炎细胞凋亡和炎症的机制","authors":"Xiaoying Xia, Qian Yang, Xue Han, Yulin Du, Shujun Guo, Mengqing Hua, Fang Fang, Zhigang Ma, Hua Ma, Hui Yuan, Wenjing Tian, Zebang Ding, Yanan Duan, Qi Huo, Yao Li","doi":"10.2174/0115665240273807231122052445","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Ulcerative colitis (UC) is a chronic non-specific inflammatory disease of the rectum and colon with unknown etiology. A growing number of evidence suggest that the pathogenesis of UC is related to excessive apoptosis and production of inflammatory cytokines. However, the functions and molecular mechanisms associated with UC remain unclear.</p><p><strong>Materials and methods: </strong>The in vivo and in vitro models of UC were established in this study. MiRNA or gene expression was measured by qRT-PCR assay. ELISA, CCK-8, TUNEL, and flow cytometry assays were applied for analyzing cellular functions. The interactions between miR-146a and TAB1 were verified by luciferase reporter and miRNA pull-down assays.</p><p><strong>Results: </strong>MiR-146a was obviously increased in UC patients, DSS-induced colitis mice, and TNF-ɑ-induced YAMC cells, when compared to the corresponding controls. MiR- 146a knockdown inhibited the inflammatory response and apoptosis in DSS-induced colitis mice and TNF-ɑ-induced YAMC cells. Mechanistically, we found that TAB1 was the target of miR-146a and miR-146a knockdown suppressed the activation of NF-κB pathway in UC. More importantly, TAB1 could overturn the inhibitory effect of antagomiR-146a on cell apoptosis and inflammation in UC.</p><p><strong>Conclusion: </strong>MiR-146a knockdown inhibited cell apoptosis and inflammation via targeting TAB1 and suppressing NF-κB pathway, suggesting that miR-146a may be a new therapeutic target for UC treatment.</p>","PeriodicalId":10873,"journal":{"name":"Current molecular medicine","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explore on the Mechanism of miRNA-146a/TAB1 in the Regulation of Cellular Apoptosis and Inflammation in Ulcerative Colitis Based on NF-κB Pathway.\",\"authors\":\"Xiaoying Xia, Qian Yang, Xue Han, Yulin Du, Shujun Guo, Mengqing Hua, Fang Fang, Zhigang Ma, Hua Ma, Hui Yuan, Wenjing Tian, Zebang Ding, Yanan Duan, Qi Huo, Yao Li\",\"doi\":\"10.2174/0115665240273807231122052445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Ulcerative colitis (UC) is a chronic non-specific inflammatory disease of the rectum and colon with unknown etiology. A growing number of evidence suggest that the pathogenesis of UC is related to excessive apoptosis and production of inflammatory cytokines. However, the functions and molecular mechanisms associated with UC remain unclear.</p><p><strong>Materials and methods: </strong>The in vivo and in vitro models of UC were established in this study. MiRNA or gene expression was measured by qRT-PCR assay. ELISA, CCK-8, TUNEL, and flow cytometry assays were applied for analyzing cellular functions. The interactions between miR-146a and TAB1 were verified by luciferase reporter and miRNA pull-down assays.</p><p><strong>Results: </strong>MiR-146a was obviously increased in UC patients, DSS-induced colitis mice, and TNF-ɑ-induced YAMC cells, when compared to the corresponding controls. MiR- 146a knockdown inhibited the inflammatory response and apoptosis in DSS-induced colitis mice and TNF-ɑ-induced YAMC cells. Mechanistically, we found that TAB1 was the target of miR-146a and miR-146a knockdown suppressed the activation of NF-κB pathway in UC. More importantly, TAB1 could overturn the inhibitory effect of antagomiR-146a on cell apoptosis and inflammation in UC.</p><p><strong>Conclusion: </strong>MiR-146a knockdown inhibited cell apoptosis and inflammation via targeting TAB1 and suppressing NF-κB pathway, suggesting that miR-146a may be a new therapeutic target for UC treatment.</p>\",\"PeriodicalId\":10873,\"journal\":{\"name\":\"Current molecular medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115665240273807231122052445\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665240273807231122052445","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:溃疡性结肠炎(UC)是一种病因不明的直肠和结肠慢性非特异性炎症性疾病。越来越多的证据表明,溃疡性结肠炎的发病机制与细胞过度凋亡和炎性细胞因子的产生有关。然而,与 UC 相关的功能和分子机制仍不清楚:本研究建立了 UC 的体内和体外模型。通过 qRT-PCR 检测 MiRNA 或基因的表达。应用 ELISA、CCK-8、TUNEL 和流式细胞术分析细胞功能。通过荧光素酶报告和 miRNA 牵引实验验证了 miR-146a 与 TAB1 之间的相互作用:结果:与相应的对照组相比,MiR-146a在UC患者、DSS诱导的结肠炎小鼠和TNF-ɑ诱导的YAMC细胞中明显升高。敲除MiR- 146a可抑制DSS诱导的结肠炎小鼠和TNF-ɑ诱导的YAMC细胞的炎症反应和凋亡。从机理上讲,我们发现TAB1是miR-146a的靶点,敲除miR-146a可抑制NF-κB通路在UC中的激活。更重要的是,TAB1能推翻antagomiR-146a对UC细胞凋亡和炎症的抑制作用:结论:通过靶向TAB1和抑制NF-κB通路,敲除miR-146a可抑制细胞凋亡和炎症反应,这表明miR-146a可能是治疗UC的新靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Explore on the Mechanism of miRNA-146a/TAB1 in the Regulation of Cellular Apoptosis and Inflammation in Ulcerative Colitis Based on NF-κB Pathway.

Objective: Ulcerative colitis (UC) is a chronic non-specific inflammatory disease of the rectum and colon with unknown etiology. A growing number of evidence suggest that the pathogenesis of UC is related to excessive apoptosis and production of inflammatory cytokines. However, the functions and molecular mechanisms associated with UC remain unclear.

Materials and methods: The in vivo and in vitro models of UC were established in this study. MiRNA or gene expression was measured by qRT-PCR assay. ELISA, CCK-8, TUNEL, and flow cytometry assays were applied for analyzing cellular functions. The interactions between miR-146a and TAB1 were verified by luciferase reporter and miRNA pull-down assays.

Results: MiR-146a was obviously increased in UC patients, DSS-induced colitis mice, and TNF-ɑ-induced YAMC cells, when compared to the corresponding controls. MiR- 146a knockdown inhibited the inflammatory response and apoptosis in DSS-induced colitis mice and TNF-ɑ-induced YAMC cells. Mechanistically, we found that TAB1 was the target of miR-146a and miR-146a knockdown suppressed the activation of NF-κB pathway in UC. More importantly, TAB1 could overturn the inhibitory effect of antagomiR-146a on cell apoptosis and inflammation in UC.

Conclusion: MiR-146a knockdown inhibited cell apoptosis and inflammation via targeting TAB1 and suppressing NF-κB pathway, suggesting that miR-146a may be a new therapeutic target for UC treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current molecular medicine
Current molecular medicine 医学-医学:研究与实验
CiteScore
5.00
自引率
4.00%
发文量
141
审稿时长
4-8 weeks
期刊介绍: Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews/ mini-reviews, original research articles, short communications/letters and drug clinical trial studies on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal invites guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.
期刊最新文献
Role of Nrf2 in Epilepsy Treatment. Exploring the Neuroprotective Potential of Icariin through Modulation of Neural Pathways in the Treatment of Neurological Diseases. Multiplex PCR System for the Diagnosis of Plague. Stem Cells as a Novel Source for Regenerative Medicinal Applications in Alzheimer's Disease: An Update. Fascin Inhibitor NP-G2-044 Decreases Cell Metastasis and Increases Overall Survival of Mice-Bearing Lung Cancers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1