{"title":"没食子酸对鱼藤酮诱导的神经变性小鼠的神经保护作用","authors":"Wachiryah Thong-Asa, Chatrung Wassana, Kunyarat Sukkasem, Pichcha Innoi, Montira Dechakul, Pattraporn Timda","doi":"10.1538/expanim.23-0165","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the effect of gallic acid (Gal) against neurodegenerative pathophysiology relevant to Parkinsion's disease (PD) in mice with rotenone-induced toxicity. Forty male institute of cancer research (ICR) mice were randomly divided into four groups: sham-veh, PD-veh (received subcutaneous injection with 2.5 mg/kg/48 h of rotenone); PD-Gal50; and PD-Gal100 (the latter two groups received subcutaneous injection with 2.5 mg/kg/48 h of rotenone and oral gavage with gallic acid 50 and 100 mg/kg/48 h, respectively). All treatments continued for 5 weeks with motor ability assessments once per week using hanging and rotarod tests. Brain tissue evaluation of oxidative status, together with striatal and substantia nigra par compacta (SNc) histological and immunohistological assessments were performed. The results indicate that rotenone significantly induced muscle weakness and motor coordination deficit from the first week of rotenone injection, and a significant increase in neuronal degeneration was presented in both the striatum and SNc. Decreased tyrosine hydroxylase and increment of glia fibrillary acidic protein expression in SNc were depicted. The deteriorating effects of rotenone were ameliorated by gallic acid treatment, especially 100 mg/kg dose. Rotenone did not induce a significant change of lipid peroxidation indicated, but gallic acid exhibited a significant inhibitory effect on the lipid peroxidation increment. Rotenone showed a significant reduction of superoxide dismutase activity, and neither 50 nor 100 mg/kg of gallic acid could alleviate this enzyme activity. In conclusion, gallic acid ameliorated motor deficits and preserving SNc neurons which led to maintaining of the dopaminergic source, including a nurturing effect on supporting astrocytes in mice with rotenone-induced neurodegeneration.</p>","PeriodicalId":12102,"journal":{"name":"Experimental Animals","volume":" ","pages":"259-269"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254496/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neuroprotective effect of gallic acid in mice with rotenone-induced neurodegeneration.\",\"authors\":\"Wachiryah Thong-Asa, Chatrung Wassana, Kunyarat Sukkasem, Pichcha Innoi, Montira Dechakul, Pattraporn Timda\",\"doi\":\"10.1538/expanim.23-0165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigated the effect of gallic acid (Gal) against neurodegenerative pathophysiology relevant to Parkinsion's disease (PD) in mice with rotenone-induced toxicity. Forty male institute of cancer research (ICR) mice were randomly divided into four groups: sham-veh, PD-veh (received subcutaneous injection with 2.5 mg/kg/48 h of rotenone); PD-Gal50; and PD-Gal100 (the latter two groups received subcutaneous injection with 2.5 mg/kg/48 h of rotenone and oral gavage with gallic acid 50 and 100 mg/kg/48 h, respectively). All treatments continued for 5 weeks with motor ability assessments once per week using hanging and rotarod tests. Brain tissue evaluation of oxidative status, together with striatal and substantia nigra par compacta (SNc) histological and immunohistological assessments were performed. The results indicate that rotenone significantly induced muscle weakness and motor coordination deficit from the first week of rotenone injection, and a significant increase in neuronal degeneration was presented in both the striatum and SNc. Decreased tyrosine hydroxylase and increment of glia fibrillary acidic protein expression in SNc were depicted. The deteriorating effects of rotenone were ameliorated by gallic acid treatment, especially 100 mg/kg dose. Rotenone did not induce a significant change of lipid peroxidation indicated, but gallic acid exhibited a significant inhibitory effect on the lipid peroxidation increment. Rotenone showed a significant reduction of superoxide dismutase activity, and neither 50 nor 100 mg/kg of gallic acid could alleviate this enzyme activity. In conclusion, gallic acid ameliorated motor deficits and preserving SNc neurons which led to maintaining of the dopaminergic source, including a nurturing effect on supporting astrocytes in mice with rotenone-induced neurodegeneration.</p>\",\"PeriodicalId\":12102,\"journal\":{\"name\":\"Experimental Animals\",\"volume\":\" \",\"pages\":\"259-269\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254496/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Animals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1538/expanim.23-0165\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Animals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1538/expanim.23-0165","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Neuroprotective effect of gallic acid in mice with rotenone-induced neurodegeneration.
We investigated the effect of gallic acid (Gal) against neurodegenerative pathophysiology relevant to Parkinsion's disease (PD) in mice with rotenone-induced toxicity. Forty male institute of cancer research (ICR) mice were randomly divided into four groups: sham-veh, PD-veh (received subcutaneous injection with 2.5 mg/kg/48 h of rotenone); PD-Gal50; and PD-Gal100 (the latter two groups received subcutaneous injection with 2.5 mg/kg/48 h of rotenone and oral gavage with gallic acid 50 and 100 mg/kg/48 h, respectively). All treatments continued for 5 weeks with motor ability assessments once per week using hanging and rotarod tests. Brain tissue evaluation of oxidative status, together with striatal and substantia nigra par compacta (SNc) histological and immunohistological assessments were performed. The results indicate that rotenone significantly induced muscle weakness and motor coordination deficit from the first week of rotenone injection, and a significant increase in neuronal degeneration was presented in both the striatum and SNc. Decreased tyrosine hydroxylase and increment of glia fibrillary acidic protein expression in SNc were depicted. The deteriorating effects of rotenone were ameliorated by gallic acid treatment, especially 100 mg/kg dose. Rotenone did not induce a significant change of lipid peroxidation indicated, but gallic acid exhibited a significant inhibitory effect on the lipid peroxidation increment. Rotenone showed a significant reduction of superoxide dismutase activity, and neither 50 nor 100 mg/kg of gallic acid could alleviate this enzyme activity. In conclusion, gallic acid ameliorated motor deficits and preserving SNc neurons which led to maintaining of the dopaminergic source, including a nurturing effect on supporting astrocytes in mice with rotenone-induced neurodegeneration.
期刊介绍:
The aim of this international journal is to accelerate progress in laboratory animal experimentation and disseminate relevant information in related areas through publication of peer reviewed Original papers and Review articles. The journal covers basic to applied biomedical research centering around use of experimental animals and also covers topics related to experimental animals such as technology, management, and animal welfare.