Takanori Sato MD, PhD, Peter Hanna MD, PhD, Shumpei Mori MD, PhD
{"title":"冠状动脉的神经支配及其在控制微血管阻力中的作用。","authors":"Takanori Sato MD, PhD, Peter Hanna MD, PhD, Shumpei Mori MD, PhD","doi":"10.1016/j.jjcc.2024.01.005","DOIUrl":null,"url":null,"abstract":"<div><p>The coronary circulation plays a crucial role in balancing myocardial perfusion and oxygen demand to prevent myocardial ischemia. Extravascular compressive forces, coronary perfusion pressure, and microvascular resistance are involved to regulate coronary blood flow throughout the cardiac cycle. Autoregulation of the coronary blood flow through dynamic adjustment of microvascular resistance is maintained by complex interactions among mechanical, endothelial, metabolic, neural, and hormonal mechanisms. This review focuses on the neural mechanism. Anatomy and physiology of the coronary arterial innervation have been extensively investigated using animal models. However, findings in the animal heart have limited applicability to the human heart as cardiac innervation is generally highly variable among species. So far, limited data are available on the human coronary artery innervation, rendering multiple questions unresolved. Recently, the clinical entity of ischemia with non-obstructive coronary arteries has been proposed, characterized by microvascular dysfunction involving abnormal vasoconstriction and impaired vasodilation. Thus, measurement of microvascular resistance has become a standard diagnostic for patients without significant stenosis in the epicardial coronary arteries. Neural mechanism is likely to play a pivotal role, supported by the efficacy of cardiac sympathetic denervation to control symptoms in patients with angina. Therefore, understanding the coronary artery innervation and control of microvascular resistance of the human heart is increasingly important for cardiologists for diagnosis and to select appropriate therapeutic options. Advancement in this field can lead to innovations in diagnostic and therapeutic approaches for coronary artery diseases.</p></div>","PeriodicalId":15223,"journal":{"name":"Journal of cardiology","volume":"84 1","pages":"Pages 1-13"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0914508724000108/pdfft?md5=9879e829da6e24fff7095fe829667472&pid=1-s2.0-S0914508724000108-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Innervation of the coronary arteries and its role in controlling microvascular resistance\",\"authors\":\"Takanori Sato MD, PhD, Peter Hanna MD, PhD, Shumpei Mori MD, PhD\",\"doi\":\"10.1016/j.jjcc.2024.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The coronary circulation plays a crucial role in balancing myocardial perfusion and oxygen demand to prevent myocardial ischemia. Extravascular compressive forces, coronary perfusion pressure, and microvascular resistance are involved to regulate coronary blood flow throughout the cardiac cycle. Autoregulation of the coronary blood flow through dynamic adjustment of microvascular resistance is maintained by complex interactions among mechanical, endothelial, metabolic, neural, and hormonal mechanisms. This review focuses on the neural mechanism. Anatomy and physiology of the coronary arterial innervation have been extensively investigated using animal models. However, findings in the animal heart have limited applicability to the human heart as cardiac innervation is generally highly variable among species. So far, limited data are available on the human coronary artery innervation, rendering multiple questions unresolved. Recently, the clinical entity of ischemia with non-obstructive coronary arteries has been proposed, characterized by microvascular dysfunction involving abnormal vasoconstriction and impaired vasodilation. Thus, measurement of microvascular resistance has become a standard diagnostic for patients without significant stenosis in the epicardial coronary arteries. Neural mechanism is likely to play a pivotal role, supported by the efficacy of cardiac sympathetic denervation to control symptoms in patients with angina. Therefore, understanding the coronary artery innervation and control of microvascular resistance of the human heart is increasingly important for cardiologists for diagnosis and to select appropriate therapeutic options. Advancement in this field can lead to innovations in diagnostic and therapeutic approaches for coronary artery diseases.</p></div>\",\"PeriodicalId\":15223,\"journal\":{\"name\":\"Journal of cardiology\",\"volume\":\"84 1\",\"pages\":\"Pages 1-13\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0914508724000108/pdfft?md5=9879e829da6e24fff7095fe829667472&pid=1-s2.0-S0914508724000108-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0914508724000108\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0914508724000108","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Innervation of the coronary arteries and its role in controlling microvascular resistance
The coronary circulation plays a crucial role in balancing myocardial perfusion and oxygen demand to prevent myocardial ischemia. Extravascular compressive forces, coronary perfusion pressure, and microvascular resistance are involved to regulate coronary blood flow throughout the cardiac cycle. Autoregulation of the coronary blood flow through dynamic adjustment of microvascular resistance is maintained by complex interactions among mechanical, endothelial, metabolic, neural, and hormonal mechanisms. This review focuses on the neural mechanism. Anatomy and physiology of the coronary arterial innervation have been extensively investigated using animal models. However, findings in the animal heart have limited applicability to the human heart as cardiac innervation is generally highly variable among species. So far, limited data are available on the human coronary artery innervation, rendering multiple questions unresolved. Recently, the clinical entity of ischemia with non-obstructive coronary arteries has been proposed, characterized by microvascular dysfunction involving abnormal vasoconstriction and impaired vasodilation. Thus, measurement of microvascular resistance has become a standard diagnostic for patients without significant stenosis in the epicardial coronary arteries. Neural mechanism is likely to play a pivotal role, supported by the efficacy of cardiac sympathetic denervation to control symptoms in patients with angina. Therefore, understanding the coronary artery innervation and control of microvascular resistance of the human heart is increasingly important for cardiologists for diagnosis and to select appropriate therapeutic options. Advancement in this field can lead to innovations in diagnostic and therapeutic approaches for coronary artery diseases.
期刊介绍:
The official journal of the Japanese College of Cardiology is an international, English language, peer-reviewed journal publishing the latest findings in cardiovascular medicine. Journal of Cardiology (JC) aims to publish the highest-quality material covering original basic and clinical research on all aspects of cardiovascular disease. Topics covered include ischemic heart disease, cardiomyopathy, valvular heart disease, vascular disease, hypertension, arrhythmia, congenital heart disease, pharmacological and non-pharmacological treatment, new diagnostic techniques, and cardiovascular imaging. JC also publishes a selection of review articles, clinical trials, short communications, and important messages and letters to the editor.