Romy I. Kerbus, Caroline Decourt, Megan A. Inglis, Rebecca E. Campbell, Greg M. Anderson
{"title":"雄激素受体对AgRP神经元的作用并不是围青春期雄激素化小鼠生殖和代谢障碍的主要原因。","authors":"Romy I. Kerbus, Caroline Decourt, Megan A. Inglis, Rebecca E. Campbell, Greg M. Anderson","doi":"10.1111/jne.13370","DOIUrl":null,"url":null,"abstract":"<p>Excess levels of circulating androgens during prenatal or peripubertal development are an important cause of polycystic ovary syndrome (PCOS), with the brain being a key target. Approximately half of the women diagnosed with PCOS also experience metabolic syndrome; common features including obesity, insulin resistance and hyperinsulinemia. Although a large amount of clinical and preclinical evidence has confirmed this relationship between androgens and the reproductive and metabolic features of PCOS, the mechanisms by which androgens cause this dysregulation are unknown. Neuron-specific androgen receptor knockout alleviates some PCOS-like features in a peripubertal dihydrotestosterone (DHT) mouse model, but the specific neuronal populations mediating these effects are undefined. A candidate population is the agouti-related peptide (AgRP)-expressing neurons, which are important for both reproductive and metabolic function. We used a well-characterised peripubertal androgenized mouse model and Cre-loxP transgenics to investigate whether deleting androgen receptors specifically from AgRP neurons can alleviate the induced reproductive and metabolic dysregulation. Androgen receptors were co-expressed in 66% of AgRP neurons in control mice, but only in <2% of AgRP neurons in knockout mice. The number of AgRP neurons was not altered by the treatments. Only 20% of androgen receptor knockout mice showed rescue of DHT-induced androgen-induced anovulation and acyclicity. Furthermore, androgen receptor knockout did not rescue metabolic dysfunction (body weight, adiposity or glucose and insulin tolerance). While we cannot rule out developmental compensation in our model, these results suggest peripubertal androgen excess does not markedly influence <i>Agrp</i> expression and does not dysregulate reproductive and metabolic function through direct actions of androgens onto AgRP neurons.</p>","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":"36 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jne.13370","citationCount":"0","resultStr":"{\"title\":\"Androgen receptor actions on AgRP neurons are not a major cause of reproductive and metabolic impairments in peripubertally androgenized mice\",\"authors\":\"Romy I. Kerbus, Caroline Decourt, Megan A. Inglis, Rebecca E. Campbell, Greg M. Anderson\",\"doi\":\"10.1111/jne.13370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Excess levels of circulating androgens during prenatal or peripubertal development are an important cause of polycystic ovary syndrome (PCOS), with the brain being a key target. Approximately half of the women diagnosed with PCOS also experience metabolic syndrome; common features including obesity, insulin resistance and hyperinsulinemia. Although a large amount of clinical and preclinical evidence has confirmed this relationship between androgens and the reproductive and metabolic features of PCOS, the mechanisms by which androgens cause this dysregulation are unknown. Neuron-specific androgen receptor knockout alleviates some PCOS-like features in a peripubertal dihydrotestosterone (DHT) mouse model, but the specific neuronal populations mediating these effects are undefined. A candidate population is the agouti-related peptide (AgRP)-expressing neurons, which are important for both reproductive and metabolic function. We used a well-characterised peripubertal androgenized mouse model and Cre-loxP transgenics to investigate whether deleting androgen receptors specifically from AgRP neurons can alleviate the induced reproductive and metabolic dysregulation. Androgen receptors were co-expressed in 66% of AgRP neurons in control mice, but only in <2% of AgRP neurons in knockout mice. The number of AgRP neurons was not altered by the treatments. Only 20% of androgen receptor knockout mice showed rescue of DHT-induced androgen-induced anovulation and acyclicity. Furthermore, androgen receptor knockout did not rescue metabolic dysfunction (body weight, adiposity or glucose and insulin tolerance). While we cannot rule out developmental compensation in our model, these results suggest peripubertal androgen excess does not markedly influence <i>Agrp</i> expression and does not dysregulate reproductive and metabolic function through direct actions of androgens onto AgRP neurons.</p>\",\"PeriodicalId\":16535,\"journal\":{\"name\":\"Journal of Neuroendocrinology\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jne.13370\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroendocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jne.13370\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jne.13370","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Androgen receptor actions on AgRP neurons are not a major cause of reproductive and metabolic impairments in peripubertally androgenized mice
Excess levels of circulating androgens during prenatal or peripubertal development are an important cause of polycystic ovary syndrome (PCOS), with the brain being a key target. Approximately half of the women diagnosed with PCOS also experience metabolic syndrome; common features including obesity, insulin resistance and hyperinsulinemia. Although a large amount of clinical and preclinical evidence has confirmed this relationship between androgens and the reproductive and metabolic features of PCOS, the mechanisms by which androgens cause this dysregulation are unknown. Neuron-specific androgen receptor knockout alleviates some PCOS-like features in a peripubertal dihydrotestosterone (DHT) mouse model, but the specific neuronal populations mediating these effects are undefined. A candidate population is the agouti-related peptide (AgRP)-expressing neurons, which are important for both reproductive and metabolic function. We used a well-characterised peripubertal androgenized mouse model and Cre-loxP transgenics to investigate whether deleting androgen receptors specifically from AgRP neurons can alleviate the induced reproductive and metabolic dysregulation. Androgen receptors were co-expressed in 66% of AgRP neurons in control mice, but only in <2% of AgRP neurons in knockout mice. The number of AgRP neurons was not altered by the treatments. Only 20% of androgen receptor knockout mice showed rescue of DHT-induced androgen-induced anovulation and acyclicity. Furthermore, androgen receptor knockout did not rescue metabolic dysfunction (body weight, adiposity or glucose and insulin tolerance). While we cannot rule out developmental compensation in our model, these results suggest peripubertal androgen excess does not markedly influence Agrp expression and does not dysregulate reproductive and metabolic function through direct actions of androgens onto AgRP neurons.
期刊介绍:
Journal of Neuroendocrinology provides the principal international focus for the newest ideas in classical neuroendocrinology and its expanding interface with the regulation of behavioural, cognitive, developmental, degenerative and metabolic processes. Through the rapid publication of original manuscripts and provocative review articles, it provides essential reading for basic scientists and clinicians researching in this rapidly expanding field.
In determining content, the primary considerations are excellence, relevance and novelty. While Journal of Neuroendocrinology reflects the broad scientific and clinical interests of the BSN membership, the editorial team, led by Professor Julian Mercer, ensures that the journal’s ethos, authorship, content and purpose are those expected of a leading international publication.