Alba Espí-Malillos , Carla Palacios-Gorba , Inmaculada López-Almela , Pilar Ruiz-García , María Carmen López-Mendoza , Francisco García-Del Portillo , M Graciela Pucciarelli , Juan J. Quereda
{"title":"牛奶中的动力学和蛋白质组学研究显示,主要李斯特菌克隆之间存在不同的模式。","authors":"Alba Espí-Malillos , Carla Palacios-Gorba , Inmaculada López-Almela , Pilar Ruiz-García , María Carmen López-Mendoza , Francisco García-Del Portillo , M Graciela Pucciarelli , Juan J. Quereda","doi":"10.1016/j.micinf.2024.105312","DOIUrl":null,"url":null,"abstract":"<div><div><em>Listeria monocytogenes</em>, a contaminant of raw milk, includes hypervirulent clonal complexes (CC) like CC1, CC4, and CC6, highly overrepresented in dairy products when compared to other food types. Whether their higher prevalence in dairy products is the consequence of a growth advantage in this food remains unknown. We examined growth kinetics of five <em>L. monocytogenes</em> isolates (CC1, CC4, CC6, CC9, and CC121) at 37 and 4 °C in ultra-high temperature (UHT) milk and raw milk. At 4 °C, hypovirulent CC9 and CC121 isolates exhibit better growth parameters in UHT milk compared to the hypervirulent CC1, CC4, and CC6 isolates. CC9 isolate in raw milk at 4 °C exhibited the fastest growth and the highest final concentrations. In contrast, hypervirulent isolates (CC1, CC4, and CC6) displayed better growth rates in UHT milk at 37 °C, the mammalian host temperature. Proteomic analysis of representative hyper- (CC1) and hypovirulent (CC9) isolates showed that they respond to milk cues differently with CC-specific traits. Proteins related to metabolism (such as LysA or different phosphotransferase systems), and stress response were upregulated in both isolates during growth in UHT milk. Our results show that there is a <em>Listeria</em> CC-specific and a <em>Listeria</em> CC-common response to the milk environment. These findings shed light on the overrepresentation of hypervirulent <em>L. monocytogenes</em> isolates in dairy products, suggesting that CC1 and CC4 overrepresentation in dairy products made of raw milk may arise from contamination during or after milking at the farm and discard an advantage of hypervirulent isolates in milk products when stored at refrigeration temperatures.</div></div>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":"27 1","pages":"Article 105312"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic and proteomic studies in milk show distinct patterns among major Listeria monocytogenes clones\",\"authors\":\"Alba Espí-Malillos , Carla Palacios-Gorba , Inmaculada López-Almela , Pilar Ruiz-García , María Carmen López-Mendoza , Francisco García-Del Portillo , M Graciela Pucciarelli , Juan J. Quereda\",\"doi\":\"10.1016/j.micinf.2024.105312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Listeria monocytogenes</em>, a contaminant of raw milk, includes hypervirulent clonal complexes (CC) like CC1, CC4, and CC6, highly overrepresented in dairy products when compared to other food types. Whether their higher prevalence in dairy products is the consequence of a growth advantage in this food remains unknown. We examined growth kinetics of five <em>L. monocytogenes</em> isolates (CC1, CC4, CC6, CC9, and CC121) at 37 and 4 °C in ultra-high temperature (UHT) milk and raw milk. At 4 °C, hypovirulent CC9 and CC121 isolates exhibit better growth parameters in UHT milk compared to the hypervirulent CC1, CC4, and CC6 isolates. CC9 isolate in raw milk at 4 °C exhibited the fastest growth and the highest final concentrations. In contrast, hypervirulent isolates (CC1, CC4, and CC6) displayed better growth rates in UHT milk at 37 °C, the mammalian host temperature. Proteomic analysis of representative hyper- (CC1) and hypovirulent (CC9) isolates showed that they respond to milk cues differently with CC-specific traits. Proteins related to metabolism (such as LysA or different phosphotransferase systems), and stress response were upregulated in both isolates during growth in UHT milk. Our results show that there is a <em>Listeria</em> CC-specific and a <em>Listeria</em> CC-common response to the milk environment. These findings shed light on the overrepresentation of hypervirulent <em>L. monocytogenes</em> isolates in dairy products, suggesting that CC1 and CC4 overrepresentation in dairy products made of raw milk may arise from contamination during or after milking at the farm and discard an advantage of hypervirulent isolates in milk products when stored at refrigeration temperatures.</div></div>\",\"PeriodicalId\":18497,\"journal\":{\"name\":\"Microbes and Infection\",\"volume\":\"27 1\",\"pages\":\"Article 105312\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbes and Infection\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1286457924000327\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Infection","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1286457924000327","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Kinetic and proteomic studies in milk show distinct patterns among major Listeria monocytogenes clones
Listeria monocytogenes, a contaminant of raw milk, includes hypervirulent clonal complexes (CC) like CC1, CC4, and CC6, highly overrepresented in dairy products when compared to other food types. Whether their higher prevalence in dairy products is the consequence of a growth advantage in this food remains unknown. We examined growth kinetics of five L. monocytogenes isolates (CC1, CC4, CC6, CC9, and CC121) at 37 and 4 °C in ultra-high temperature (UHT) milk and raw milk. At 4 °C, hypovirulent CC9 and CC121 isolates exhibit better growth parameters in UHT milk compared to the hypervirulent CC1, CC4, and CC6 isolates. CC9 isolate in raw milk at 4 °C exhibited the fastest growth and the highest final concentrations. In contrast, hypervirulent isolates (CC1, CC4, and CC6) displayed better growth rates in UHT milk at 37 °C, the mammalian host temperature. Proteomic analysis of representative hyper- (CC1) and hypovirulent (CC9) isolates showed that they respond to milk cues differently with CC-specific traits. Proteins related to metabolism (such as LysA or different phosphotransferase systems), and stress response were upregulated in both isolates during growth in UHT milk. Our results show that there is a Listeria CC-specific and a Listeria CC-common response to the milk environment. These findings shed light on the overrepresentation of hypervirulent L. monocytogenes isolates in dairy products, suggesting that CC1 and CC4 overrepresentation in dairy products made of raw milk may arise from contamination during or after milking at the farm and discard an advantage of hypervirulent isolates in milk products when stored at refrigeration temperatures.
期刊介绍:
Microbes and Infection publishes 10 peer-reviewed issues per year in all fields of infection and immunity, covering the different levels of host-microbe interactions, and in particular:
the molecular biology and cell biology of the crosstalk between hosts (human and model organisms) and microbes (viruses, bacteria, parasites and fungi), including molecular virulence and evasion mechanisms.
the immune response to infection, including pathogenesis and host susceptibility.
emerging human infectious diseases.
systems immunology.
molecular epidemiology/genetics of host pathogen interactions.
microbiota and host "interactions".
vaccine development, including novel strategies and adjuvants.
Clinical studies, accounts of clinical trials and biomarker studies in infectious diseases are within the scope of the journal.
Microbes and Infection publishes articles on human pathogens or pathogens of model systems. However, articles on other microbes can be published if they contribute to our understanding of basic mechanisms of host-pathogen interactions. Purely descriptive and preliminary studies are discouraged.