Mengdie Wang , Namin Feng , Jia Qin , Shengqiang Wang , Jiabao Chen , Shaojie Qian , Yulin Liu , Foquan Luo
{"title":"氯胺酮麻醉下的第二孕期腹部手术通过调节树突棘重塑损害大鼠后代的海马学习和记忆能力","authors":"Mengdie Wang , Namin Feng , Jia Qin , Shengqiang Wang , Jiabao Chen , Shaojie Qian , Yulin Liu , Foquan Luo","doi":"10.1016/j.neuro.2024.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>Recent evidence showed that general anesthesia produces long-term neurotoxicity and cognitive dysfunction. However, it remains unclear whether maternal non-obstetric surgery under ketamine anesthesia during second trimester causes cognitive impairment in offspring. The present study assigned pregnant rats into three groups: 1) normal control group receiving no anesthesia and no surgery, 2) ketamine group receiving ketamine anesthesia for 2 h on the 14th day of gestation but no surgery, and 3) surgery group receiving abdominal surgery under ketamine anesthesia on the 14th day of gestation. On postnatal day 1, the offspring rats in Ketamine group and surgery group were assigned to receive intra-peritoneal injection of Senegenin (15 mg/kg), once per day for consecutive 14 days. The offspring’s spatial perception, anxiety-like behavior, and learning and memory were evaluated. Then the offspring’s hippocampal tissues were collected. The offspring of the surgery group were impaired in the spatial perception in the cliff avoidance test and the spatial learning and memory in the Morris water maze test. Accordingly, the activity of histone deacetylases increased, the protein levels of NEDD9, BDNF, p-TrkB, Syn and PSD-95 decreased, and the density of dendritic spines reduced in the hippocampus of the offspring of the surgery group, and such effects were not seen in the offspring of the ketamine group, neither in the offspring of control group. Senegenin alleviated the learning and memory impairment, and increased the protein levels of NEDD9, BDNF, p-TrkB, Syn and PSD-95 and the density of dendritic spines in the offspring of the surgery group. <strong>k</strong>etamine anesthesia plus surgery during second trimester impairs hippocampus-dependent learning and memory, and the deficits could be rescued by treatment with Senegenin.</p></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"101 ","pages":"Pages 82-92"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0161813X24000172/pdfft?md5=eb80e4f9f750dee33817e65699db0c48&pid=1-s2.0-S0161813X24000172-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Abdominal surgery under ketamine anesthesia during second trimester impairs hippocampal learning and memory of offspring by regulating dendrite spine remodeling in rats\",\"authors\":\"Mengdie Wang , Namin Feng , Jia Qin , Shengqiang Wang , Jiabao Chen , Shaojie Qian , Yulin Liu , Foquan Luo\",\"doi\":\"10.1016/j.neuro.2024.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent evidence showed that general anesthesia produces long-term neurotoxicity and cognitive dysfunction. However, it remains unclear whether maternal non-obstetric surgery under ketamine anesthesia during second trimester causes cognitive impairment in offspring. The present study assigned pregnant rats into three groups: 1) normal control group receiving no anesthesia and no surgery, 2) ketamine group receiving ketamine anesthesia for 2 h on the 14th day of gestation but no surgery, and 3) surgery group receiving abdominal surgery under ketamine anesthesia on the 14th day of gestation. On postnatal day 1, the offspring rats in Ketamine group and surgery group were assigned to receive intra-peritoneal injection of Senegenin (15 mg/kg), once per day for consecutive 14 days. The offspring’s spatial perception, anxiety-like behavior, and learning and memory were evaluated. Then the offspring’s hippocampal tissues were collected. The offspring of the surgery group were impaired in the spatial perception in the cliff avoidance test and the spatial learning and memory in the Morris water maze test. Accordingly, the activity of histone deacetylases increased, the protein levels of NEDD9, BDNF, p-TrkB, Syn and PSD-95 decreased, and the density of dendritic spines reduced in the hippocampus of the offspring of the surgery group, and such effects were not seen in the offspring of the ketamine group, neither in the offspring of control group. Senegenin alleviated the learning and memory impairment, and increased the protein levels of NEDD9, BDNF, p-TrkB, Syn and PSD-95 and the density of dendritic spines in the offspring of the surgery group. <strong>k</strong>etamine anesthesia plus surgery during second trimester impairs hippocampus-dependent learning and memory, and the deficits could be rescued by treatment with Senegenin.</p></div>\",\"PeriodicalId\":19189,\"journal\":{\"name\":\"Neurotoxicology\",\"volume\":\"101 \",\"pages\":\"Pages 82-92\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0161813X24000172/pdfft?md5=eb80e4f9f750dee33817e65699db0c48&pid=1-s2.0-S0161813X24000172-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0161813X24000172\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161813X24000172","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Abdominal surgery under ketamine anesthesia during second trimester impairs hippocampal learning and memory of offspring by regulating dendrite spine remodeling in rats
Recent evidence showed that general anesthesia produces long-term neurotoxicity and cognitive dysfunction. However, it remains unclear whether maternal non-obstetric surgery under ketamine anesthesia during second trimester causes cognitive impairment in offspring. The present study assigned pregnant rats into three groups: 1) normal control group receiving no anesthesia and no surgery, 2) ketamine group receiving ketamine anesthesia for 2 h on the 14th day of gestation but no surgery, and 3) surgery group receiving abdominal surgery under ketamine anesthesia on the 14th day of gestation. On postnatal day 1, the offspring rats in Ketamine group and surgery group were assigned to receive intra-peritoneal injection of Senegenin (15 mg/kg), once per day for consecutive 14 days. The offspring’s spatial perception, anxiety-like behavior, and learning and memory were evaluated. Then the offspring’s hippocampal tissues were collected. The offspring of the surgery group were impaired in the spatial perception in the cliff avoidance test and the spatial learning and memory in the Morris water maze test. Accordingly, the activity of histone deacetylases increased, the protein levels of NEDD9, BDNF, p-TrkB, Syn and PSD-95 decreased, and the density of dendritic spines reduced in the hippocampus of the offspring of the surgery group, and such effects were not seen in the offspring of the ketamine group, neither in the offspring of control group. Senegenin alleviated the learning and memory impairment, and increased the protein levels of NEDD9, BDNF, p-TrkB, Syn and PSD-95 and the density of dendritic spines in the offspring of the surgery group. ketamine anesthesia plus surgery during second trimester impairs hippocampus-dependent learning and memory, and the deficits could be rescued by treatment with Senegenin.
期刊介绍:
NeuroToxicology specializes in publishing the best peer-reviewed original research papers dealing with the effects of toxic substances on the nervous system of humans and experimental animals of all ages. The Journal emphasizes papers dealing with the neurotoxic effects of environmentally significant chemical hazards, manufactured drugs and naturally occurring compounds.