强调美国国立卫生研究院(NIAID)辐射与核对策计划致力于培训辐射工作人员并使其多样化。

IF 2.5 3区 医学 Q2 BIOLOGY Radiation research Pub Date : 2024-04-01 DOI:10.1667/RADE-23-00207.1
Olivia Molinar-Inglis, LeShawndra N Price, Andrea L DiCarlo
{"title":"强调美国国立卫生研究院(NIAID)辐射与核对策计划致力于培训辐射工作人员并使其多样化。","authors":"Olivia Molinar-Inglis, LeShawndra N Price, Andrea L DiCarlo","doi":"10.1667/RADE-23-00207.1","DOIUrl":null,"url":null,"abstract":"<p><p>Developing and maintaining a robust and diverse scientific workforce is crucial to advance knowledge, drive innovation, and tackle societal issues that impact the economy and human health. The shortage of trained professionals in radiation and nuclear sciences derives from many factors, such as scarcity of specialized coursework, programming, professional development, and experiential learning at educational institutions, which significantly disrupt the training pipeline. Other challenges include small numbers of faculty and educators with specialized radiation/nuclear expertise that are continually overextended professionally and scientifically, with the burden of training falling on this subset of individuals. Even more alarming is the recent loss of radiobiologists due to increased retirements and deaths, leaving the radiobiology community with a void of mentors and knowledge. Lastly, inconsistency in acquiring stable grant funding to recruit and retain scientists is a major hurdle to training the next generation of radiation and nuclear scientists. Recommendations from the scientific community and the National Academies of Sciences, Engineering, and Medicine describe the need to bolster educational resources and provide more hands-on training experiences. Of equal importance was the suggestion that funding agencies provide more opportunities for training and tracking the radiation workforce. The Radiation and Nuclear Countermeasures Program (RNCP), and the Office of Research Training and Special Programs (ORTSP), both within the National Institute of Allergy and Infectious Diseases (NIAID) are committed to helping to develop and sustain the radiation research workforce. This commentary illustrates the importance of addressing radiation workforce development and outlines steps that the RNCP is taking to help mitigate the issue. In addition, the role for Diversity, Equity, Inclusion, and Accessibility (DEIA) in helping to increase the number of students trained in the radiation sciences is discussed, and the NIH's DEIA priorities and RNCP efforts to improve DEIA in the research community are highlighted. One of the main goals of this commentary is to provide awareness of available educational (i.e., development of a radiation biologist eBook) and funding resources. A summary of available awards targeting early- to mid-stage investigators and diversity candidates is given, and it is hoped that this list, although not exhaustive and not specific for all focus areas in radiation (e.g., cancer research), will encourage more radiation biologists to explore and apply to these under-utilized opportunities.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11060511/pdf/","citationCount":"0","resultStr":"{\"title\":\"Highlighting the NIAID Radiation and Nuclear Countermeasures Program's Commitment to Training and Diversifying the Radiation Workforce.\",\"authors\":\"Olivia Molinar-Inglis, LeShawndra N Price, Andrea L DiCarlo\",\"doi\":\"10.1667/RADE-23-00207.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing and maintaining a robust and diverse scientific workforce is crucial to advance knowledge, drive innovation, and tackle societal issues that impact the economy and human health. The shortage of trained professionals in radiation and nuclear sciences derives from many factors, such as scarcity of specialized coursework, programming, professional development, and experiential learning at educational institutions, which significantly disrupt the training pipeline. Other challenges include small numbers of faculty and educators with specialized radiation/nuclear expertise that are continually overextended professionally and scientifically, with the burden of training falling on this subset of individuals. Even more alarming is the recent loss of radiobiologists due to increased retirements and deaths, leaving the radiobiology community with a void of mentors and knowledge. Lastly, inconsistency in acquiring stable grant funding to recruit and retain scientists is a major hurdle to training the next generation of radiation and nuclear scientists. Recommendations from the scientific community and the National Academies of Sciences, Engineering, and Medicine describe the need to bolster educational resources and provide more hands-on training experiences. Of equal importance was the suggestion that funding agencies provide more opportunities for training and tracking the radiation workforce. The Radiation and Nuclear Countermeasures Program (RNCP), and the Office of Research Training and Special Programs (ORTSP), both within the National Institute of Allergy and Infectious Diseases (NIAID) are committed to helping to develop and sustain the radiation research workforce. This commentary illustrates the importance of addressing radiation workforce development and outlines steps that the RNCP is taking to help mitigate the issue. In addition, the role for Diversity, Equity, Inclusion, and Accessibility (DEIA) in helping to increase the number of students trained in the radiation sciences is discussed, and the NIH's DEIA priorities and RNCP efforts to improve DEIA in the research community are highlighted. One of the main goals of this commentary is to provide awareness of available educational (i.e., development of a radiation biologist eBook) and funding resources. A summary of available awards targeting early- to mid-stage investigators and diversity candidates is given, and it is hoped that this list, although not exhaustive and not specific for all focus areas in radiation (e.g., cancer research), will encourage more radiation biologists to explore and apply to these under-utilized opportunities.</p>\",\"PeriodicalId\":20903,\"journal\":{\"name\":\"Radiation research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11060511/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1667/RADE-23-00207.1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-23-00207.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

培养和保持一支强大而多元化的科学人才队伍,对于推动知识进步、推动创新、解决影响经济和人类健康的社会问题至关重要。辐射与核科学领域训练有素的专业人员短缺的原因有很多,例如教育机构缺乏专业课程、计划、职业发展和体验式学习,这极大地扰乱了培训渠道。其他挑战还包括少数具有辐射/核专业技能的教师和教育工作者在专业和科学方面持续超负荷工作,培训的重担落在了这部分人身上。更令人担忧的是,最近由于退休和死亡人数的增加,放射生物学专家流失严重,导致放射生物学界导师和知识匮乏。最后,在招聘和留住科学家方面难以获得稳定的资助,这也是培养下一代辐射与核科学家的一大障碍。科学界和美国国家科学院、工程院和医学院的建议指出,需要加强教育资源,提供更多的实践培训经验。同样重要的是,建议资助机构提供更多培训和跟踪辐射工作人员的机会。美国国家过敏与传染病研究所(NIAID)下属的辐射与核对策计划(RNCP)和研究培训与特别计划办公室(ORTSP)致力于帮助发展和维持辐射研究人员队伍。本评论说明了解决辐射研究人员队伍发展问题的重要性,并概述了国家过敏与传染病研究所正在采取的有助于缓解这一问题的措施。此外,还讨论了 "多样性、公平性、包容性和无障碍性"(DEIA)在帮助增加接受辐射科学培训的学生人数方面的作用,并强调了美国国立卫生研究院(NIH)的 "多样性、公平性、包容性和无障碍性"(DEIA)优先事项以及 RNCP 为改善研究界的 "多样性、公平性、包容性和无障碍性"(DEIA)所做的努力。本评论的主要目的之一是让人们了解现有的教育(即开发辐射生物学家电子书)和资金资源。本评论概述了针对早中期研究人员和多样性候选人的可用奖项,希望这份清单(尽管并非详尽无遗,也并非针对辐射领域的所有重点领域(如癌症研究))能鼓励更多辐射生物学家探索和申请这些未得到充分利用的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highlighting the NIAID Radiation and Nuclear Countermeasures Program's Commitment to Training and Diversifying the Radiation Workforce.

Developing and maintaining a robust and diverse scientific workforce is crucial to advance knowledge, drive innovation, and tackle societal issues that impact the economy and human health. The shortage of trained professionals in radiation and nuclear sciences derives from many factors, such as scarcity of specialized coursework, programming, professional development, and experiential learning at educational institutions, which significantly disrupt the training pipeline. Other challenges include small numbers of faculty and educators with specialized radiation/nuclear expertise that are continually overextended professionally and scientifically, with the burden of training falling on this subset of individuals. Even more alarming is the recent loss of radiobiologists due to increased retirements and deaths, leaving the radiobiology community with a void of mentors and knowledge. Lastly, inconsistency in acquiring stable grant funding to recruit and retain scientists is a major hurdle to training the next generation of radiation and nuclear scientists. Recommendations from the scientific community and the National Academies of Sciences, Engineering, and Medicine describe the need to bolster educational resources and provide more hands-on training experiences. Of equal importance was the suggestion that funding agencies provide more opportunities for training and tracking the radiation workforce. The Radiation and Nuclear Countermeasures Program (RNCP), and the Office of Research Training and Special Programs (ORTSP), both within the National Institute of Allergy and Infectious Diseases (NIAID) are committed to helping to develop and sustain the radiation research workforce. This commentary illustrates the importance of addressing radiation workforce development and outlines steps that the RNCP is taking to help mitigate the issue. In addition, the role for Diversity, Equity, Inclusion, and Accessibility (DEIA) in helping to increase the number of students trained in the radiation sciences is discussed, and the NIH's DEIA priorities and RNCP efforts to improve DEIA in the research community are highlighted. One of the main goals of this commentary is to provide awareness of available educational (i.e., development of a radiation biologist eBook) and funding resources. A summary of available awards targeting early- to mid-stage investigators and diversity candidates is given, and it is hoped that this list, although not exhaustive and not specific for all focus areas in radiation (e.g., cancer research), will encourage more radiation biologists to explore and apply to these under-utilized opportunities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiation research
Radiation research 医学-核医学
CiteScore
5.10
自引率
8.80%
发文量
179
审稿时长
1 months
期刊介绍: Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with chemical agents contributing to the understanding of radiation effects.
期刊最新文献
Organ-specific Biodosimetry Modeling Using Proteomic Biomarkers of Radiation Exposure. Biomarkers for Radiation Biodosimetry and Correlation with Hematopoietic Injury in a Humanized Mouse Model. Estimating Impacts of p16 Status on Tumor Radiosensitivity in Head and Neck Cancer using Predictive Models. Impact of Cosmic Rays on Radiation Exposures and Scientific Activities at the Atacama Large Millimeter/Submillimeter Array (ALMA) Sites. Mitigating Viral Impact on the Radiation Response of the Lung.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1