间充质干细胞衍生的外泌体通过抑制肺泡巨噬细胞的脓毒症减轻急性肺损伤

IF 5.4 2区 医学 Q1 CELL & TISSUE ENGINEERING Stem Cells Translational Medicine Pub Date : 2024-04-15 DOI:10.1093/stcltm/szad094
Peipei Liu, Shengnan Yang, Xuecheng Shao, Chen Li, Zai Wang, Huaping Dai, Chen Wang
{"title":"间充质干细胞衍生的外泌体通过抑制肺泡巨噬细胞的脓毒症减轻急性肺损伤","authors":"Peipei Liu, Shengnan Yang, Xuecheng Shao, Chen Li, Zai Wang, Huaping Dai, Chen Wang","doi":"10.1093/stcltm/szad094","DOIUrl":null,"url":null,"abstract":"<p><p>Acute lung injury (ALI) is an important pathological process of acute respiratory distress syndrome, yet there are limited therapies for its treatment. Mesenchymal stem cells-derived exosomes (MSCs-Exo) have been shown to be effective in suppressing inflammation. However, the effects of MSCs-Exo on ALI and the underlying mechanisms have not been well elucidated. Our data showed that MSCs-Exo, but not exosomes derived from MRC-5 cells (MRC-5-Exo), which are human fetal lung fibroblast cells, significantly improved chest imaging, histological observations, alveolocapillary membrane permeability, and reduced inflammatory response in ALI mice model. According to miRNA sequencing and proteomic analysis of MSCs-Exo and MRC-5-Exo, MSCs-Exo may inhibit pyroptosis by miRNAs targeting caspase-1-mediated pathway, and by proteins with immunoregulation functions. Taken together, our study demonstrated that MSCs-Exo were effective in treating ALI by inhibiting the pyroptosis of alveolar macrophages and reducing inflammation response. Its mechanism may be through pyroptosis-targeting miRNAs and immunoregulating proteins delivered by MSCs-Exo. Therefore, MSCs-Exo may be a new treatment option in the early stage of ALI.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016849/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mesenchymal Stem Cells-Derived Exosomes Alleviate Acute Lung Injury by Inhibiting Alveolar Macrophage Pyroptosis.\",\"authors\":\"Peipei Liu, Shengnan Yang, Xuecheng Shao, Chen Li, Zai Wang, Huaping Dai, Chen Wang\",\"doi\":\"10.1093/stcltm/szad094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute lung injury (ALI) is an important pathological process of acute respiratory distress syndrome, yet there are limited therapies for its treatment. Mesenchymal stem cells-derived exosomes (MSCs-Exo) have been shown to be effective in suppressing inflammation. However, the effects of MSCs-Exo on ALI and the underlying mechanisms have not been well elucidated. Our data showed that MSCs-Exo, but not exosomes derived from MRC-5 cells (MRC-5-Exo), which are human fetal lung fibroblast cells, significantly improved chest imaging, histological observations, alveolocapillary membrane permeability, and reduced inflammatory response in ALI mice model. According to miRNA sequencing and proteomic analysis of MSCs-Exo and MRC-5-Exo, MSCs-Exo may inhibit pyroptosis by miRNAs targeting caspase-1-mediated pathway, and by proteins with immunoregulation functions. Taken together, our study demonstrated that MSCs-Exo were effective in treating ALI by inhibiting the pyroptosis of alveolar macrophages and reducing inflammation response. Its mechanism may be through pyroptosis-targeting miRNAs and immunoregulating proteins delivered by MSCs-Exo. Therefore, MSCs-Exo may be a new treatment option in the early stage of ALI.</p>\",\"PeriodicalId\":21986,\"journal\":{\"name\":\"Stem Cells Translational Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016849/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cells Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/stcltm/szad094\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szad094","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

急性肺损伤(ALI)是急性呼吸窘迫综合征的一个重要病理过程,但目前治疗ALI的方法有限。间充质干细胞衍生的外泌体(MSCs-Exo)已被证明能有效抑制炎症。然而,间充质干细胞外泌体对ALI的影响及其内在机制尚未得到很好的阐明。我们的数据显示,间充质干细胞外泌体能显著改善ALI小鼠模型的胸部成像、组织学观察、肺泡毛细血管膜通透性,并减轻炎症反应。根据间充质干细胞-Exo和MRC-5-Exo的miRNA测序和蛋白质组学分析,间充质干细胞-Exo可能通过靶向caspase-1介导通路的miRNA和具有免疫调节功能的蛋白质抑制脓毒症。综上所述,我们的研究表明间充质干细胞-Exo可通过抑制肺泡巨噬细胞的嗜热和减轻炎症反应来有效治疗ALI。其机制可能是通过间充质干细胞-Exo传递的热凋亡靶向miRNAs和免疫调节蛋白。因此,间充质干细胞-Exo可能是ALI早期阶段的一种新的治疗选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mesenchymal Stem Cells-Derived Exosomes Alleviate Acute Lung Injury by Inhibiting Alveolar Macrophage Pyroptosis.

Acute lung injury (ALI) is an important pathological process of acute respiratory distress syndrome, yet there are limited therapies for its treatment. Mesenchymal stem cells-derived exosomes (MSCs-Exo) have been shown to be effective in suppressing inflammation. However, the effects of MSCs-Exo on ALI and the underlying mechanisms have not been well elucidated. Our data showed that MSCs-Exo, but not exosomes derived from MRC-5 cells (MRC-5-Exo), which are human fetal lung fibroblast cells, significantly improved chest imaging, histological observations, alveolocapillary membrane permeability, and reduced inflammatory response in ALI mice model. According to miRNA sequencing and proteomic analysis of MSCs-Exo and MRC-5-Exo, MSCs-Exo may inhibit pyroptosis by miRNAs targeting caspase-1-mediated pathway, and by proteins with immunoregulation functions. Taken together, our study demonstrated that MSCs-Exo were effective in treating ALI by inhibiting the pyroptosis of alveolar macrophages and reducing inflammation response. Its mechanism may be through pyroptosis-targeting miRNAs and immunoregulating proteins delivered by MSCs-Exo. Therefore, MSCs-Exo may be a new treatment option in the early stage of ALI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cells Translational Medicine
Stem Cells Translational Medicine CELL & TISSUE ENGINEERING-
CiteScore
12.90
自引率
3.30%
发文量
140
审稿时长
6-12 weeks
期刊介绍: STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal. STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes. The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.
期刊最新文献
Progranulin enhances the engraftment of transplanted human iPS cell-derived cerebral neurons. eIF6 modulates skin wound healing by upregulating keratin 6B. Impact of immunosuppressive drugs on efficacy of mesenchymal stem cell therapy for suppressing renal fibrosis. Mesenchymal stromal cells-derived small extracellular vesicles protect against UV-induced photoaging via regulating pregnancy zone protein. Nose-to-brain delivery of stem cells in stroke: the role of extracellular vesicles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1