{"title":"不同组织提出的暴露控制措施:纳米材料相关活动的奇特案例。","authors":"Soqrat Omari Shekaftik, Nafiseh Nasirzadeh","doi":"10.1080/10803548.2024.2318088","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objectives</i>. The unique properties of nanomaterials have turned them into an emerging threat for humans and the environment. This study therefore aimed to review exposure control measures proposed for nanomaterial-involved activities. <i>Methods</i>. This study is based on the published guidelines of different organizations on safe handling of nanomaterials. The search for documents was provided using the keywords 'Exposure controls', 'Good practices', 'Working safely', 'Safe practices', 'Handling safely', 'Safety guide' and 'Safety and health', combined with 'Nanomaterials', 'Nanotechnology' and 'Nanoparticles' on different databases and websites. <i>Results</i>. Thirty-one guidelines from 27 organizations were included. Most of the guidelines recommended engineering controls, administrative controls and personal protective equipment (PPE). Changing the physical form of nanomaterials or the process, using prevention through design (PtD) and using green chemistry principals were other suggestions to reduce exposure to nanomaterials. <i>Conclusions</i>. Considering the difficulty of implementation and case specificity of the solutions of the first two priorities of the hierarchy of controls (elimination and substitution), the emphasis of the guidelines on the next three priorities for controlling exposure to nanomaterials is understood. The type and method of using PPE and engineering controls should be resolved by referring to cutting-edge articles.</p>","PeriodicalId":47704,"journal":{"name":"International Journal of Occupational Safety and Ergonomics","volume":" ","pages":"460-470"},"PeriodicalIF":1.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exposure control measures proposed by different organizations: the curious case of nanomaterial-involved activities.\",\"authors\":\"Soqrat Omari Shekaftik, Nafiseh Nasirzadeh\",\"doi\":\"10.1080/10803548.2024.2318088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objectives</i>. The unique properties of nanomaterials have turned them into an emerging threat for humans and the environment. This study therefore aimed to review exposure control measures proposed for nanomaterial-involved activities. <i>Methods</i>. This study is based on the published guidelines of different organizations on safe handling of nanomaterials. The search for documents was provided using the keywords 'Exposure controls', 'Good practices', 'Working safely', 'Safe practices', 'Handling safely', 'Safety guide' and 'Safety and health', combined with 'Nanomaterials', 'Nanotechnology' and 'Nanoparticles' on different databases and websites. <i>Results</i>. Thirty-one guidelines from 27 organizations were included. Most of the guidelines recommended engineering controls, administrative controls and personal protective equipment (PPE). Changing the physical form of nanomaterials or the process, using prevention through design (PtD) and using green chemistry principals were other suggestions to reduce exposure to nanomaterials. <i>Conclusions</i>. Considering the difficulty of implementation and case specificity of the solutions of the first two priorities of the hierarchy of controls (elimination and substitution), the emphasis of the guidelines on the next three priorities for controlling exposure to nanomaterials is understood. The type and method of using PPE and engineering controls should be resolved by referring to cutting-edge articles.</p>\",\"PeriodicalId\":47704,\"journal\":{\"name\":\"International Journal of Occupational Safety and Ergonomics\",\"volume\":\" \",\"pages\":\"460-470\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Occupational Safety and Ergonomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10803548.2024.2318088\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ERGONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Occupational Safety and Ergonomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10803548.2024.2318088","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ERGONOMICS","Score":null,"Total":0}
Exposure control measures proposed by different organizations: the curious case of nanomaterial-involved activities.
Objectives. The unique properties of nanomaterials have turned them into an emerging threat for humans and the environment. This study therefore aimed to review exposure control measures proposed for nanomaterial-involved activities. Methods. This study is based on the published guidelines of different organizations on safe handling of nanomaterials. The search for documents was provided using the keywords 'Exposure controls', 'Good practices', 'Working safely', 'Safe practices', 'Handling safely', 'Safety guide' and 'Safety and health', combined with 'Nanomaterials', 'Nanotechnology' and 'Nanoparticles' on different databases and websites. Results. Thirty-one guidelines from 27 organizations were included. Most of the guidelines recommended engineering controls, administrative controls and personal protective equipment (PPE). Changing the physical form of nanomaterials or the process, using prevention through design (PtD) and using green chemistry principals were other suggestions to reduce exposure to nanomaterials. Conclusions. Considering the difficulty of implementation and case specificity of the solutions of the first two priorities of the hierarchy of controls (elimination and substitution), the emphasis of the guidelines on the next three priorities for controlling exposure to nanomaterials is understood. The type and method of using PPE and engineering controls should be resolved by referring to cutting-edge articles.