{"title":"矩形板在组合载荷作用下的简化极限强度估算方法","authors":"Kinya Ishibashi , Daisuke Shiomitsu , Akira Tatsumi , Masahiko Fujikubo","doi":"10.1016/j.marstruc.2024.103592","DOIUrl":null,"url":null,"abstract":"<div><p>A simple method for estimating the ultimate strength of rectangular plates under combined biaxial and shear loads is proposed. Although numerous studies have been conducted to predict the ultimate strength of plates, most conventional methods rely on empirical approaches that involve plastic correction of the elastic buckling strength or curve fitting through nonlinear finite element analysis (NLFEA) or experimental test results. For a more rational design of hull structures, it is important to develop an estimation method with a more theoretical basis corresponding to physical phenomena, such as post-buckling and yielding behavior, the effects of initial imperfections and material properties as well as the elastic buckling strength. Although some methods with the more theoretical basis were developed in previous studies, they often require numerical iterations such as the Newton-Raphson method to obtain load-deflection relationships. Our approach entails a thorough observation of the buckling and collapse behavior obtained from a series of NLFEA calculations, rather than merely investigating the magnitude of the ultimate strength derived from NLFEA. By applying the elastic-large deflection theory and considering the identified buckling modes, analytical solutions that describe the elastic post-buckling behaviors are derived. The ultimate strength is predicted by assessing the yield at pre-defined locations corresponding to the classified collapse modes. The proposed semi-analytical method eliminates the need for numerical iterative methods to obtain load-deflection relationships and provides a simple estimation of the ultimate strength. The accuracy of the proposed method is validated through a comparison with NLFEA results.</p></div>","PeriodicalId":49879,"journal":{"name":"Marine Structures","volume":"95 ","pages":"Article 103592"},"PeriodicalIF":4.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0951833924000200/pdfft?md5=21a7ec3bc10d9677e5082fd1a9fef272&pid=1-s2.0-S0951833924000200-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Simplified ultimate strength estimation method of rectangular plates under combined loads\",\"authors\":\"Kinya Ishibashi , Daisuke Shiomitsu , Akira Tatsumi , Masahiko Fujikubo\",\"doi\":\"10.1016/j.marstruc.2024.103592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A simple method for estimating the ultimate strength of rectangular plates under combined biaxial and shear loads is proposed. Although numerous studies have been conducted to predict the ultimate strength of plates, most conventional methods rely on empirical approaches that involve plastic correction of the elastic buckling strength or curve fitting through nonlinear finite element analysis (NLFEA) or experimental test results. For a more rational design of hull structures, it is important to develop an estimation method with a more theoretical basis corresponding to physical phenomena, such as post-buckling and yielding behavior, the effects of initial imperfections and material properties as well as the elastic buckling strength. Although some methods with the more theoretical basis were developed in previous studies, they often require numerical iterations such as the Newton-Raphson method to obtain load-deflection relationships. Our approach entails a thorough observation of the buckling and collapse behavior obtained from a series of NLFEA calculations, rather than merely investigating the magnitude of the ultimate strength derived from NLFEA. By applying the elastic-large deflection theory and considering the identified buckling modes, analytical solutions that describe the elastic post-buckling behaviors are derived. The ultimate strength is predicted by assessing the yield at pre-defined locations corresponding to the classified collapse modes. The proposed semi-analytical method eliminates the need for numerical iterative methods to obtain load-deflection relationships and provides a simple estimation of the ultimate strength. The accuracy of the proposed method is validated through a comparison with NLFEA results.</p></div>\",\"PeriodicalId\":49879,\"journal\":{\"name\":\"Marine Structures\",\"volume\":\"95 \",\"pages\":\"Article 103592\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0951833924000200/pdfft?md5=21a7ec3bc10d9677e5082fd1a9fef272&pid=1-s2.0-S0951833924000200-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951833924000200\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951833924000200","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Simplified ultimate strength estimation method of rectangular plates under combined loads
A simple method for estimating the ultimate strength of rectangular plates under combined biaxial and shear loads is proposed. Although numerous studies have been conducted to predict the ultimate strength of plates, most conventional methods rely on empirical approaches that involve plastic correction of the elastic buckling strength or curve fitting through nonlinear finite element analysis (NLFEA) or experimental test results. For a more rational design of hull structures, it is important to develop an estimation method with a more theoretical basis corresponding to physical phenomena, such as post-buckling and yielding behavior, the effects of initial imperfections and material properties as well as the elastic buckling strength. Although some methods with the more theoretical basis were developed in previous studies, they often require numerical iterations such as the Newton-Raphson method to obtain load-deflection relationships. Our approach entails a thorough observation of the buckling and collapse behavior obtained from a series of NLFEA calculations, rather than merely investigating the magnitude of the ultimate strength derived from NLFEA. By applying the elastic-large deflection theory and considering the identified buckling modes, analytical solutions that describe the elastic post-buckling behaviors are derived. The ultimate strength is predicted by assessing the yield at pre-defined locations corresponding to the classified collapse modes. The proposed semi-analytical method eliminates the need for numerical iterative methods to obtain load-deflection relationships and provides a simple estimation of the ultimate strength. The accuracy of the proposed method is validated through a comparison with NLFEA results.
期刊介绍:
This journal aims to provide a medium for presentation and discussion of the latest developments in research, design, fabrication and in-service experience relating to marine structures, i.e., all structures of steel, concrete, light alloy or composite construction having an interface with the sea, including ships, fixed and mobile offshore platforms, submarine and submersibles, pipelines, subsea systems for shallow and deep ocean operations and coastal structures such as piers.