利用 PCA 加强物联网中的 DDoS 攻击检测

IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Egyptian Informatics Journal Pub Date : 2024-02-13 DOI:10.1016/j.eij.2024.100450
Sanjit Kumar Dash , Sweta Dash , Satyajit Mahapatra , Sachi Nandan Mohanty , M. Ijaz Khan , Mohamed Medani , Sherzod Abdullaev , Manish Gupta
{"title":"利用 PCA 加强物联网中的 DDoS 攻击检测","authors":"Sanjit Kumar Dash ,&nbsp;Sweta Dash ,&nbsp;Satyajit Mahapatra ,&nbsp;Sachi Nandan Mohanty ,&nbsp;M. Ijaz Khan ,&nbsp;Mohamed Medani ,&nbsp;Sherzod Abdullaev ,&nbsp;Manish Gupta","doi":"10.1016/j.eij.2024.100450","DOIUrl":null,"url":null,"abstract":"<div><p>Internet of Things (IoT) security and reliability rely on the capacity to identify distributed denial-of-service (DDoS) assaults in IoT networks. This research presents a comprehensive study on DDoS attack detection using the NSL-KDD dataset. The dataset contains a diverse set of network traffic data. This paper proposes two approaches, one utilizing Principal Component Analysis (PCA) and another without PCA, to compare their performance. Robust scaling and encoding techniques are applied as preprocessing steps. The experiment outcomes demonstrate a noteworthy improvement in the accuracy of DDoS attack detection in IoT devices by integrating PCA and Robust Scaler. Notably, the Random Forest and KNN classifiers demonstrate exceptional performance with an accuracy of 99.87 % and 99.14 %, respectively, while Naïve Bayes shows a lower accuracy of 87.14 %. The findings from this experiment contribute valuable insights into enhancing the security of IoT devices against DDoS attacks. The proposed approach showcases the importance of appropriate preprocessing techniques in achieving robust intrusion detection systems for IoT environments.</p></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110866524000136/pdfft?md5=79ba5dd7dc26e95a91245bb192dd085a&pid=1-s2.0-S1110866524000136-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing DDoS attack detection in IoT using PCA\",\"authors\":\"Sanjit Kumar Dash ,&nbsp;Sweta Dash ,&nbsp;Satyajit Mahapatra ,&nbsp;Sachi Nandan Mohanty ,&nbsp;M. Ijaz Khan ,&nbsp;Mohamed Medani ,&nbsp;Sherzod Abdullaev ,&nbsp;Manish Gupta\",\"doi\":\"10.1016/j.eij.2024.100450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Internet of Things (IoT) security and reliability rely on the capacity to identify distributed denial-of-service (DDoS) assaults in IoT networks. This research presents a comprehensive study on DDoS attack detection using the NSL-KDD dataset. The dataset contains a diverse set of network traffic data. This paper proposes two approaches, one utilizing Principal Component Analysis (PCA) and another without PCA, to compare their performance. Robust scaling and encoding techniques are applied as preprocessing steps. The experiment outcomes demonstrate a noteworthy improvement in the accuracy of DDoS attack detection in IoT devices by integrating PCA and Robust Scaler. Notably, the Random Forest and KNN classifiers demonstrate exceptional performance with an accuracy of 99.87 % and 99.14 %, respectively, while Naïve Bayes shows a lower accuracy of 87.14 %. The findings from this experiment contribute valuable insights into enhancing the security of IoT devices against DDoS attacks. The proposed approach showcases the importance of appropriate preprocessing techniques in achieving robust intrusion detection systems for IoT environments.</p></div>\",\"PeriodicalId\":56010,\"journal\":{\"name\":\"Egyptian Informatics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1110866524000136/pdfft?md5=79ba5dd7dc26e95a91245bb192dd085a&pid=1-s2.0-S1110866524000136-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Informatics Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110866524000136\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866524000136","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)的安全性和可靠性取决于识别物联网网络中分布式拒绝服务(DDoS)攻击的能力。本研究利用 NSL-KDD 数据集对 DDoS 攻击检测进行了全面研究。该数据集包含一组多样化的网络流量数据。本文提出了两种方法,一种是利用主成分分析(PCA)的方法,另一种是不利用 PCA 的方法,以比较它们的性能。在预处理步骤中应用了稳健的缩放和编码技术。实验结果表明,通过整合 PCA 和 Robust Scaler,物联网设备中 DDoS 攻击检测的准确性有了显著提高。值得注意的是,随机森林分类器和 KNN 分类器表现出卓越的性能,准确率分别为 99.87 % 和 99.14 %,而 Naïve Bayes 的准确率较低,仅为 87.14 %。该实验的结果为提高物联网设备的安全性以抵御 DDoS 攻击提供了宝贵的见解。所提出的方法展示了适当的预处理技术在为物联网环境实现稳健的入侵检测系统方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing DDoS attack detection in IoT using PCA

Internet of Things (IoT) security and reliability rely on the capacity to identify distributed denial-of-service (DDoS) assaults in IoT networks. This research presents a comprehensive study on DDoS attack detection using the NSL-KDD dataset. The dataset contains a diverse set of network traffic data. This paper proposes two approaches, one utilizing Principal Component Analysis (PCA) and another without PCA, to compare their performance. Robust scaling and encoding techniques are applied as preprocessing steps. The experiment outcomes demonstrate a noteworthy improvement in the accuracy of DDoS attack detection in IoT devices by integrating PCA and Robust Scaler. Notably, the Random Forest and KNN classifiers demonstrate exceptional performance with an accuracy of 99.87 % and 99.14 %, respectively, while Naïve Bayes shows a lower accuracy of 87.14 %. The findings from this experiment contribute valuable insights into enhancing the security of IoT devices against DDoS attacks. The proposed approach showcases the importance of appropriate preprocessing techniques in achieving robust intrusion detection systems for IoT environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Egyptian Informatics Journal
Egyptian Informatics Journal Decision Sciences-Management Science and Operations Research
CiteScore
11.10
自引率
1.90%
发文量
59
审稿时长
110 days
期刊介绍: The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.
期刊最新文献
HD-MVCNN: High-density ECG signal based diabetic prediction and classification using multi-view convolutional neural network A hybrid encryption algorithm based approach for secure privacy protection of big data in hospitals A new probabilistic linguistic decision-making process based on PL-BWM and improved three-way TODIM methods Interval valued inventory model with different payment strategies for green products under interval valued Grey Wolf optimizer Algorithm fitness function Intelligent SDN to enhance security in IoT networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1