{"title":"固体粘弹性、热膨胀和热传导现象的热力学扩展交映数值模拟","authors":"Donát M. Takács, Áron Pozsár, Tamás Fülöp","doi":"10.1007/s00161-024-01280-w","DOIUrl":null,"url":null,"abstract":"<div><p>Symplectic numerical schemes for reversible dynamical systems predict the solution reliably over large times as well, and are a good starting point for extension to schemes for simulating irreversible situations like viscoelastic wave propagation and heat conduction coupled via thermal expansion occuring in rocks, plastics, biological samples etc. Dissipation error (artificial nonpreservation of energies and amplitudes) of the numerical solution should be as small as possible since it should not be confused with the real dissipation occurring in the irreversible system. In addition, the other well-known numerical artefact, dispersion error (artificial oscillations emerging at sharp changes), should also be minimal to avoid confusion with the true wavy behavior. The continuum thermodynamical aspects (respect for balances with fluxes, systematic constitutive relationships between intensive quantities and fluxes, the second law of thermodynamics with positive definite entropy production, and the spacetime-based kinematic viewpoint) prove valuable for obtaining such extended schemes and for monitoring the solutions. Generalizing earlier works in this direction, here, we establish and investigate such a numerical scheme for one-dimensional viscoelastic wave propagation in the presence of heat conduction coupled via thermal expansion, demonstrating long-term reliability and the applicability of thermodynamics-based quantities in supervising the quality of the solution.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"36 3","pages":"525 - 538"},"PeriodicalIF":1.9000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00161-024-01280-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Thermodynamically extended symplectic numerical simulation of viscoelastic, thermal expansion and heat conduction phenomena in solids\",\"authors\":\"Donát M. Takács, Áron Pozsár, Tamás Fülöp\",\"doi\":\"10.1007/s00161-024-01280-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Symplectic numerical schemes for reversible dynamical systems predict the solution reliably over large times as well, and are a good starting point for extension to schemes for simulating irreversible situations like viscoelastic wave propagation and heat conduction coupled via thermal expansion occuring in rocks, plastics, biological samples etc. Dissipation error (artificial nonpreservation of energies and amplitudes) of the numerical solution should be as small as possible since it should not be confused with the real dissipation occurring in the irreversible system. In addition, the other well-known numerical artefact, dispersion error (artificial oscillations emerging at sharp changes), should also be minimal to avoid confusion with the true wavy behavior. The continuum thermodynamical aspects (respect for balances with fluxes, systematic constitutive relationships between intensive quantities and fluxes, the second law of thermodynamics with positive definite entropy production, and the spacetime-based kinematic viewpoint) prove valuable for obtaining such extended schemes and for monitoring the solutions. Generalizing earlier works in this direction, here, we establish and investigate such a numerical scheme for one-dimensional viscoelastic wave propagation in the presence of heat conduction coupled via thermal expansion, demonstrating long-term reliability and the applicability of thermodynamics-based quantities in supervising the quality of the solution.</p></div>\",\"PeriodicalId\":525,\"journal\":{\"name\":\"Continuum Mechanics and Thermodynamics\",\"volume\":\"36 3\",\"pages\":\"525 - 538\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00161-024-01280-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Continuum Mechanics and Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00161-024-01280-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-024-01280-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Thermodynamically extended symplectic numerical simulation of viscoelastic, thermal expansion and heat conduction phenomena in solids
Symplectic numerical schemes for reversible dynamical systems predict the solution reliably over large times as well, and are a good starting point for extension to schemes for simulating irreversible situations like viscoelastic wave propagation and heat conduction coupled via thermal expansion occuring in rocks, plastics, biological samples etc. Dissipation error (artificial nonpreservation of energies and amplitudes) of the numerical solution should be as small as possible since it should not be confused with the real dissipation occurring in the irreversible system. In addition, the other well-known numerical artefact, dispersion error (artificial oscillations emerging at sharp changes), should also be minimal to avoid confusion with the true wavy behavior. The continuum thermodynamical aspects (respect for balances with fluxes, systematic constitutive relationships between intensive quantities and fluxes, the second law of thermodynamics with positive definite entropy production, and the spacetime-based kinematic viewpoint) prove valuable for obtaining such extended schemes and for monitoring the solutions. Generalizing earlier works in this direction, here, we establish and investigate such a numerical scheme for one-dimensional viscoelastic wave propagation in the presence of heat conduction coupled via thermal expansion, demonstrating long-term reliability and the applicability of thermodynamics-based quantities in supervising the quality of the solution.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.