成像等中心和脑中心之间的距离对用于脑立体定向照射的锥形束计算机断层扫描图像质量的影响。

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Physical and Engineering Sciences in Medicine Pub Date : 2024-06-01 Epub Date: 2024-02-14 DOI:10.1007/s13246-024-01389-x
Sayaka Kihara, Shingo Ohira, Naoyuki Kanayama, Toshiki Ikawa, Yoshihiro Ueda, Shoki Inui, Hikari Minami, Tomohiro Sagawa, Masayoshi Miyazaki, Masahiko Koizumi, Koji Konishi
{"title":"成像等中心和脑中心之间的距离对用于脑立体定向照射的锥形束计算机断层扫描图像质量的影响。","authors":"Sayaka Kihara, Shingo Ohira, Naoyuki Kanayama, Toshiki Ikawa, Yoshihiro Ueda, Shoki Inui, Hikari Minami, Tomohiro Sagawa, Masayoshi Miyazaki, Masahiko Koizumi, Koji Konishi","doi":"10.1007/s13246-024-01389-x","DOIUrl":null,"url":null,"abstract":"<p><p>In linear accelerator-based stereotactic irradiation (STI) for brain metastasis, cone-beam computed tomography (CBCT) image quality is essential for ensuring precise patient setup and tumor localization. However, CBCT images may be degraded by the deviation of the CBCT isocenter from the brain center. This study aims to investigate the effects of the distance from the brain center to the CBCT isocenter (DBI) on the image quality in STI. An anthropomorphic phantom was scanned with varying DBI in right, anterior, superior, and inferior directions. Thirty patients undergoing STI were prospectively recruited. Objective metrics, utilizing regions of interest included contrast-to-noise ratio (CNR) at the centrum semiovale, lateral ventricle, and basal ganglia levels, gray and white matter noise at the basal ganglia level, artifact index (AI), and nonuniformity (NU). Two radiation oncologists assessed subjective metrics. In this phantom study, objective measures indicated a degradation in image quality for non-zero DBI. In this patient study, there were significant correlations between the CNR at the centrum semiovale and lateral ventricle levels (r<sub>s</sub> = - 0.79 and - 0.77, respectively), gray matter noise (r<sub>s</sub> = 0.52), AI (r<sub>s</sub> = 0.72), and NU (r<sub>s</sub> = 0.91) and DBI. However, no significant correlations were observed between the CNR at the basal ganglia level, white matter noise, and subjective metrics and DBI (r<sub>s</sub> < ± 0.3). Our results demonstrate the effects of DBI on contrast, noise, artifacts in the posterior fossa, and uniformity of CBCT images in STI. Aligning the CBCT isocenter with the brain center can aid in improving image quality.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of distance between the imaging isocenter and brain center on the image quality of cone-beam computed tomography for brain stereotactic irradiation.\",\"authors\":\"Sayaka Kihara, Shingo Ohira, Naoyuki Kanayama, Toshiki Ikawa, Yoshihiro Ueda, Shoki Inui, Hikari Minami, Tomohiro Sagawa, Masayoshi Miyazaki, Masahiko Koizumi, Koji Konishi\",\"doi\":\"10.1007/s13246-024-01389-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In linear accelerator-based stereotactic irradiation (STI) for brain metastasis, cone-beam computed tomography (CBCT) image quality is essential for ensuring precise patient setup and tumor localization. However, CBCT images may be degraded by the deviation of the CBCT isocenter from the brain center. This study aims to investigate the effects of the distance from the brain center to the CBCT isocenter (DBI) on the image quality in STI. An anthropomorphic phantom was scanned with varying DBI in right, anterior, superior, and inferior directions. Thirty patients undergoing STI were prospectively recruited. Objective metrics, utilizing regions of interest included contrast-to-noise ratio (CNR) at the centrum semiovale, lateral ventricle, and basal ganglia levels, gray and white matter noise at the basal ganglia level, artifact index (AI), and nonuniformity (NU). Two radiation oncologists assessed subjective metrics. In this phantom study, objective measures indicated a degradation in image quality for non-zero DBI. In this patient study, there were significant correlations between the CNR at the centrum semiovale and lateral ventricle levels (r<sub>s</sub> = - 0.79 and - 0.77, respectively), gray matter noise (r<sub>s</sub> = 0.52), AI (r<sub>s</sub> = 0.72), and NU (r<sub>s</sub> = 0.91) and DBI. However, no significant correlations were observed between the CNR at the basal ganglia level, white matter noise, and subjective metrics and DBI (r<sub>s</sub> < ± 0.3). Our results demonstrate the effects of DBI on contrast, noise, artifacts in the posterior fossa, and uniformity of CBCT images in STI. Aligning the CBCT isocenter with the brain center can aid in improving image quality.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-024-01389-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01389-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在基于直线加速器的脑转移立体定向照射(STI)中,锥束计算机断层扫描(CBCT)图像质量对于确保精确的患者设置和肿瘤定位至关重要。然而,CBCT 图像可能会因 CBCT 等中心偏离大脑中心而质量下降。本研究旨在探讨脑中心到 CBCT 等中心的距离(DBI)对 STI 图像质量的影响。在右侧、前方、上方和下方不同的 DBI 方向上扫描了一个拟人化模型。前瞻性地招募了 30 名接受 STI 的患者。利用感兴趣区的客观指标包括半卵圆中心、侧脑室和基底节水平的对比噪声比(CNR)、基底节水平的灰质和白质噪声、伪影指数(AI)和不均匀性(NU)。两名放射肿瘤专家对主观指标进行了评估。在这项模型研究中,客观测量结果表明,非零 DBI 会导致图像质量下降。在这项患者研究中,半卵圆中心和侧脑室水平的 CNR(rs = - 0.79 和 - 0.77)、灰质噪声(rs = 0.52)、AI(rs = 0.72)和 NU(rs = 0.91)与 DBI 之间存在显著相关性。然而,在基底节水平的 CNR、白质噪声和主观指标与 DBI 之间没有观察到明显的相关性(rs = 0.52)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effects of distance between the imaging isocenter and brain center on the image quality of cone-beam computed tomography for brain stereotactic irradiation.

In linear accelerator-based stereotactic irradiation (STI) for brain metastasis, cone-beam computed tomography (CBCT) image quality is essential for ensuring precise patient setup and tumor localization. However, CBCT images may be degraded by the deviation of the CBCT isocenter from the brain center. This study aims to investigate the effects of the distance from the brain center to the CBCT isocenter (DBI) on the image quality in STI. An anthropomorphic phantom was scanned with varying DBI in right, anterior, superior, and inferior directions. Thirty patients undergoing STI were prospectively recruited. Objective metrics, utilizing regions of interest included contrast-to-noise ratio (CNR) at the centrum semiovale, lateral ventricle, and basal ganglia levels, gray and white matter noise at the basal ganglia level, artifact index (AI), and nonuniformity (NU). Two radiation oncologists assessed subjective metrics. In this phantom study, objective measures indicated a degradation in image quality for non-zero DBI. In this patient study, there were significant correlations between the CNR at the centrum semiovale and lateral ventricle levels (rs = - 0.79 and - 0.77, respectively), gray matter noise (rs = 0.52), AI (rs = 0.72), and NU (rs = 0.91) and DBI. However, no significant correlations were observed between the CNR at the basal ganglia level, white matter noise, and subjective metrics and DBI (rs < ± 0.3). Our results demonstrate the effects of DBI on contrast, noise, artifacts in the posterior fossa, and uniformity of CBCT images in STI. Aligning the CBCT isocenter with the brain center can aid in improving image quality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
期刊最新文献
PET/CT-based 3D multi-class semantic segmentation of ovarian cancer and the stability of the extracted radiomics features. PPG2RespNet: a deep learning model for respirational signal synthesis and monitoring from photoplethysmography (PPG) signal Ecg signal watermarking using QR decomposition Effect of mirror system and scanner bed of a flatbed scanner on lateral response artefact in radiochromic film dosimetry A deep learning phase-based solution in 2D echocardiography motion estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1