噪声中第二语言语音的自动识别。

IF 1.2 Q3 ACOUSTICS JASA express letters Pub Date : 2024-02-01 DOI:10.1121/10.0024877
Seung-Eun Kim, Bronya R Chernyak, Olga Seleznova, Joseph Keshet, Matthew Goldrick, Ann R Bradlow
{"title":"噪声中第二语言语音的自动识别。","authors":"Seung-Eun Kim, Bronya R Chernyak, Olga Seleznova, Joseph Keshet, Matthew Goldrick, Ann R Bradlow","doi":"10.1121/10.0024877","DOIUrl":null,"url":null,"abstract":"<p><p>Measuring how well human listeners recognize speech under varying environmental conditions (speech intelligibility) is a challenge for theoretical, technological, and clinical approaches to speech communication. The current gold standard-human transcription-is time- and resource-intensive. Recent advances in automatic speech recognition (ASR) systems raise the possibility of automating intelligibility measurement. This study tested 4 state-of-the-art ASR systems with second language speech-in-noise and found that one, whisper, performed at or above human listener accuracy. However, the content of whisper's responses diverged substantially from human responses, especially at lower signal-to-noise ratios, suggesting both opportunities and limitations for ASR--based speech intelligibility modeling.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic recognition of second language speech-in-noise.\",\"authors\":\"Seung-Eun Kim, Bronya R Chernyak, Olga Seleznova, Joseph Keshet, Matthew Goldrick, Ann R Bradlow\",\"doi\":\"10.1121/10.0024877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Measuring how well human listeners recognize speech under varying environmental conditions (speech intelligibility) is a challenge for theoretical, technological, and clinical approaches to speech communication. The current gold standard-human transcription-is time- and resource-intensive. Recent advances in automatic speech recognition (ASR) systems raise the possibility of automating intelligibility measurement. This study tested 4 state-of-the-art ASR systems with second language speech-in-noise and found that one, whisper, performed at or above human listener accuracy. However, the content of whisper's responses diverged substantially from human responses, especially at lower signal-to-noise ratios, suggesting both opportunities and limitations for ASR--based speech intelligibility modeling.</p>\",\"PeriodicalId\":73538,\"journal\":{\"name\":\"JASA express letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JASA express letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0024877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0024877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

测量人类听者在不同环境条件下识别语音的能力(语音清晰度)是语音通信理论、技术和临床方法面临的一项挑战。目前的黄金标准--人工转录--耗费大量时间和资源。自动语音识别(ASR)系统的最新进展为自动测量可懂度提供了可能。这项研究用第二语言噪音语音测试了 4 种最先进的 ASR 系统,发现其中一种系统(whisper)的准确度达到或超过了人类听者的准确度。然而,whisper 的反应内容与人类的反应有很大差异,尤其是在信噪比较低的情况下,这表明基于 ASR 的语音可懂度建模既有机会也有局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic recognition of second language speech-in-noise.

Measuring how well human listeners recognize speech under varying environmental conditions (speech intelligibility) is a challenge for theoretical, technological, and clinical approaches to speech communication. The current gold standard-human transcription-is time- and resource-intensive. Recent advances in automatic speech recognition (ASR) systems raise the possibility of automating intelligibility measurement. This study tested 4 state-of-the-art ASR systems with second language speech-in-noise and found that one, whisper, performed at or above human listener accuracy. However, the content of whisper's responses diverged substantially from human responses, especially at lower signal-to-noise ratios, suggesting both opportunities and limitations for ASR--based speech intelligibility modeling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
The JIBO Kids Corpus: A speech dataset of child-robot interactions in a classroom environment. The perceptual distinctiveness of the [n-l] contrast in different vowel and tonal contexts. Ambient noise source characterization using spectral, coherence, and directionality estimates at Kongsfjorden. Speaker adaptation using codebook integrated deep neural networks for speech enhancement. Fundamental frequency predominantly drives talker differences in auditory brainstem responses to continuous speech.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1