基于 RAID2.0 的大型磁盘阵列的快速恢复:算法与评估

IF 3.4 3区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Journal of Parallel and Distributed Computing Pub Date : 2024-02-07 DOI:10.1016/j.jpdc.2024.104854
Qiliang Li , Min Lyu , Liangliang Xu , Yinlong Xu
{"title":"基于 RAID2.0 的大型磁盘阵列的快速恢复:算法与评估","authors":"Qiliang Li ,&nbsp;Min Lyu ,&nbsp;Liangliang Xu ,&nbsp;Yinlong Xu","doi":"10.1016/j.jpdc.2024.104854","DOIUrl":null,"url":null,"abstract":"<div><p>The RAID2.0 architecture, which uses dozens or even hundreds of disks, is widely adopted for large-capacity data storage. However, limited resources like memory and CPU cause RAID2.0 to execute batch recovery for disk failures. The traditional random data placement and recovery schemes result in highly skewed I/O access within a batch, which slows down the recovery speed. To address this issue, we propose DR-RAID, an efficient reconstruction scheme that balances local rebuilding workloads across all surviving disks within a batch. We dynamically select a batch of tasks with almost balanced read loads and make intra-batch adjustments for tasks with multiple solutions of reading source chunks. Furthermore, we use a bipartite graph model to achieve a uniform distribution of write loads. DR-RAID can be applied with homogeneous or heterogeneous disk rebuilding bandwidth. Experimental results demonstrate that in offline rebuilding, DR-RAID enhances the rebuilding throughput by up to 61.90% compared to the random data placement scheme. With varied rebuilding bandwidth, the improvement can reach up to 65.00%.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"188 ","pages":"Article 104854"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast recovery for large disk enclosures based on RAID2.0: Algorithms and evaluation\",\"authors\":\"Qiliang Li ,&nbsp;Min Lyu ,&nbsp;Liangliang Xu ,&nbsp;Yinlong Xu\",\"doi\":\"10.1016/j.jpdc.2024.104854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The RAID2.0 architecture, which uses dozens or even hundreds of disks, is widely adopted for large-capacity data storage. However, limited resources like memory and CPU cause RAID2.0 to execute batch recovery for disk failures. The traditional random data placement and recovery schemes result in highly skewed I/O access within a batch, which slows down the recovery speed. To address this issue, we propose DR-RAID, an efficient reconstruction scheme that balances local rebuilding workloads across all surviving disks within a batch. We dynamically select a batch of tasks with almost balanced read loads and make intra-batch adjustments for tasks with multiple solutions of reading source chunks. Furthermore, we use a bipartite graph model to achieve a uniform distribution of write loads. DR-RAID can be applied with homogeneous or heterogeneous disk rebuilding bandwidth. Experimental results demonstrate that in offline rebuilding, DR-RAID enhances the rebuilding throughput by up to 61.90% compared to the random data placement scheme. With varied rebuilding bandwidth, the improvement can reach up to 65.00%.</p></div>\",\"PeriodicalId\":54775,\"journal\":{\"name\":\"Journal of Parallel and Distributed Computing\",\"volume\":\"188 \",\"pages\":\"Article 104854\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parallel and Distributed Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0743731524000182\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524000182","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

RAID2.0 架构使用数十个甚至数百个磁盘,被广泛用于大容量数据存储。然而,由于内存和 CPU 等资源有限,RAID2.0 只能对磁盘故障执行批量恢复。传统的随机数据放置和恢复方案会导致批次内的 I/O 访问高度倾斜,从而降低恢复速度。为了解决这个问题,我们提出了 DR-RAID,这是一种高效的重建方案,可以平衡批次内所有存活磁盘的本地重建工作量。我们动态地选择一批读取负载基本平衡的任务,并对有多种读取源块解决方案的任务进行批内调整。此外,我们还使用双链图模型来实现写入负载的均匀分布。DR-RAID 可应用于同质或异质磁盘重建带宽。实验结果表明,在离线重建中,与随机数据放置方案相比,DR-RAID 提高了高达 61.90% 的重建吞吐量。在重建带宽不同的情况下,提高幅度可达 65.00%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast recovery for large disk enclosures based on RAID2.0: Algorithms and evaluation

The RAID2.0 architecture, which uses dozens or even hundreds of disks, is widely adopted for large-capacity data storage. However, limited resources like memory and CPU cause RAID2.0 to execute batch recovery for disk failures. The traditional random data placement and recovery schemes result in highly skewed I/O access within a batch, which slows down the recovery speed. To address this issue, we propose DR-RAID, an efficient reconstruction scheme that balances local rebuilding workloads across all surviving disks within a batch. We dynamically select a batch of tasks with almost balanced read loads and make intra-batch adjustments for tasks with multiple solutions of reading source chunks. Furthermore, we use a bipartite graph model to achieve a uniform distribution of write loads. DR-RAID can be applied with homogeneous or heterogeneous disk rebuilding bandwidth. Experimental results demonstrate that in offline rebuilding, DR-RAID enhances the rebuilding throughput by up to 61.90% compared to the random data placement scheme. With varied rebuilding bandwidth, the improvement can reach up to 65.00%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Parallel and Distributed Computing
Journal of Parallel and Distributed Computing 工程技术-计算机:理论方法
CiteScore
10.30
自引率
2.60%
发文量
172
审稿时长
12 months
期刊介绍: This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing. The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.
期刊最新文献
Enabling semi-supervised learning in intrusion detection systems Fault-tolerance in biswapped multiprocessor interconnection networks Editorial Board Front Matter 1 - Full Title Page (regular issues)/Special Issue Title page (special issues) Design and experimental evaluation of algorithms for optimizing the throughput of dispersed computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1