Kenta Takeda, Akito Noiri, Takashi Nakajima, Leon C. Camenzind, Takashi Kobayashi, Amir Sammak, Giordano Scappucci, Seigo Tarucha
{"title":"硅双量子点中的快速单次奇偶自旋读出,保真度超过 99","authors":"Kenta Takeda, Akito Noiri, Takashi Nakajima, Leon C. Camenzind, Takashi Kobayashi, Amir Sammak, Giordano Scappucci, Seigo Tarucha","doi":"10.1038/s41534-024-00813-0","DOIUrl":null,"url":null,"abstract":"<p>Silicon-based spin qubits offer a potential pathway toward realizing a scalable quantum computer owing to their compatibility with semiconductor manufacturing technologies. Recent experiments in this system have demonstrated crucial technologies, including high-fidelity quantum gates and multiqubit operation. However, the realization of a fault-tolerant quantum computer requires a high-fidelity spin measurement faster than decoherence. To address this challenge, we characterize and optimize the initialization and measurement procedures using the parity-mode Pauli spin blockade technique. Here, we demonstrate a rapid (with a duration of a few μs) and accurate (with >99% fidelity) parity spin measurement in a silicon double quantum dot. These results represent a significant step forward toward implementing measurement-based quantum error correction in silicon.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"38 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid single-shot parity spin readout in a silicon double quantum dot with fidelity exceeding 99%\",\"authors\":\"Kenta Takeda, Akito Noiri, Takashi Nakajima, Leon C. Camenzind, Takashi Kobayashi, Amir Sammak, Giordano Scappucci, Seigo Tarucha\",\"doi\":\"10.1038/s41534-024-00813-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silicon-based spin qubits offer a potential pathway toward realizing a scalable quantum computer owing to their compatibility with semiconductor manufacturing technologies. Recent experiments in this system have demonstrated crucial technologies, including high-fidelity quantum gates and multiqubit operation. However, the realization of a fault-tolerant quantum computer requires a high-fidelity spin measurement faster than decoherence. To address this challenge, we characterize and optimize the initialization and measurement procedures using the parity-mode Pauli spin blockade technique. Here, we demonstrate a rapid (with a duration of a few μs) and accurate (with >99% fidelity) parity spin measurement in a silicon double quantum dot. These results represent a significant step forward toward implementing measurement-based quantum error correction in silicon.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-024-00813-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00813-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Rapid single-shot parity spin readout in a silicon double quantum dot with fidelity exceeding 99%
Silicon-based spin qubits offer a potential pathway toward realizing a scalable quantum computer owing to their compatibility with semiconductor manufacturing technologies. Recent experiments in this system have demonstrated crucial technologies, including high-fidelity quantum gates and multiqubit operation. However, the realization of a fault-tolerant quantum computer requires a high-fidelity spin measurement faster than decoherence. To address this challenge, we characterize and optimize the initialization and measurement procedures using the parity-mode Pauli spin blockade technique. Here, we demonstrate a rapid (with a duration of a few μs) and accurate (with >99% fidelity) parity spin measurement in a silicon double quantum dot. These results represent a significant step forward toward implementing measurement-based quantum error correction in silicon.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.