Yanjun Zeng, Rui Hu, Wei Ma, Ying Ding, Yi Zhou, Xin Peng, Lixin Feng, Qingmei Cheng, Ziqiang Luo
{"title":"老药新用--吡喹酮可改善博莱霉素诱导的小鼠肺纤维化。","authors":"Yanjun Zeng, Rui Hu, Wei Ma, Ying Ding, Yi Zhou, Xin Peng, Lixin Feng, Qingmei Cheng, Ziqiang Luo","doi":"10.1186/s40360-024-00737-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pulmonary fibrosis is a chronic progressive disease with complex pathogenesis, short median survival time, and high mortality. There are few effective drugs approved for pulmonary fibrosis treatment. This study aimed to evaluate the effect of praziquantel (PZQ) on bleomycin (BLM)-induced pulmonary fibrosis.</p><p><strong>Methods: </strong>In this study, we investigated the role and mechanisms of PZQ in pulmonary fibrosis in a murine model induced by BLM. Parameters investigated included survival rate, lung histopathology, pulmonary collagen deposition, mRNA expression of key genes involved in pulmonary fibrosis pathogenesis, the activity of fibroblast, and M2/M1 macrophage ratio.</p><p><strong>Results: </strong>We found that PZQ improved the survival rate of mice and reduced the body weight loss induced by BLM. Histological examination showed that PZQ significantly inhibited the infiltration of inflammatory cells, collagen deposition, and hydroxyproline content in BLM-induced mice. Besides, PZQ reduced the expression of TGF-β and MMP-12 in vivo and inhibited the proliferation of fibroblast induced by TGF-β in vitro. Furthermore, PZQ affected the balance of M2/M1 macrophages.</p><p><strong>Conclusions: </strong>Our study demonstrated that PZQ could ameliorate BLM-induced pulmonary fibrosis in mice by affecting the balance of M2/M1 macrophages and suppressing the expression of TGF-β and MMP-12. These findings suggest that PZQ may act as an effective anti-fibrotic agent for preventing the progression of pulmonary fibrosis.</p>","PeriodicalId":9023,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"25 1","pages":"18"},"PeriodicalIF":2.8000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10868045/pdf/","citationCount":"0","resultStr":"{\"title\":\"New tricks for old drugs- praziquantel ameliorates bleomycin-induced pulmonary fibrosis in mice.\",\"authors\":\"Yanjun Zeng, Rui Hu, Wei Ma, Ying Ding, Yi Zhou, Xin Peng, Lixin Feng, Qingmei Cheng, Ziqiang Luo\",\"doi\":\"10.1186/s40360-024-00737-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pulmonary fibrosis is a chronic progressive disease with complex pathogenesis, short median survival time, and high mortality. There are few effective drugs approved for pulmonary fibrosis treatment. This study aimed to evaluate the effect of praziquantel (PZQ) on bleomycin (BLM)-induced pulmonary fibrosis.</p><p><strong>Methods: </strong>In this study, we investigated the role and mechanisms of PZQ in pulmonary fibrosis in a murine model induced by BLM. Parameters investigated included survival rate, lung histopathology, pulmonary collagen deposition, mRNA expression of key genes involved in pulmonary fibrosis pathogenesis, the activity of fibroblast, and M2/M1 macrophage ratio.</p><p><strong>Results: </strong>We found that PZQ improved the survival rate of mice and reduced the body weight loss induced by BLM. Histological examination showed that PZQ significantly inhibited the infiltration of inflammatory cells, collagen deposition, and hydroxyproline content in BLM-induced mice. Besides, PZQ reduced the expression of TGF-β and MMP-12 in vivo and inhibited the proliferation of fibroblast induced by TGF-β in vitro. Furthermore, PZQ affected the balance of M2/M1 macrophages.</p><p><strong>Conclusions: </strong>Our study demonstrated that PZQ could ameliorate BLM-induced pulmonary fibrosis in mice by affecting the balance of M2/M1 macrophages and suppressing the expression of TGF-β and MMP-12. These findings suggest that PZQ may act as an effective anti-fibrotic agent for preventing the progression of pulmonary fibrosis.</p>\",\"PeriodicalId\":9023,\"journal\":{\"name\":\"BMC Pharmacology & Toxicology\",\"volume\":\"25 1\",\"pages\":\"18\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10868045/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Pharmacology & Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40360-024-00737-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40360-024-00737-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
New tricks for old drugs- praziquantel ameliorates bleomycin-induced pulmonary fibrosis in mice.
Background: Pulmonary fibrosis is a chronic progressive disease with complex pathogenesis, short median survival time, and high mortality. There are few effective drugs approved for pulmonary fibrosis treatment. This study aimed to evaluate the effect of praziquantel (PZQ) on bleomycin (BLM)-induced pulmonary fibrosis.
Methods: In this study, we investigated the role and mechanisms of PZQ in pulmonary fibrosis in a murine model induced by BLM. Parameters investigated included survival rate, lung histopathology, pulmonary collagen deposition, mRNA expression of key genes involved in pulmonary fibrosis pathogenesis, the activity of fibroblast, and M2/M1 macrophage ratio.
Results: We found that PZQ improved the survival rate of mice and reduced the body weight loss induced by BLM. Histological examination showed that PZQ significantly inhibited the infiltration of inflammatory cells, collagen deposition, and hydroxyproline content in BLM-induced mice. Besides, PZQ reduced the expression of TGF-β and MMP-12 in vivo and inhibited the proliferation of fibroblast induced by TGF-β in vitro. Furthermore, PZQ affected the balance of M2/M1 macrophages.
Conclusions: Our study demonstrated that PZQ could ameliorate BLM-induced pulmonary fibrosis in mice by affecting the balance of M2/M1 macrophages and suppressing the expression of TGF-β and MMP-12. These findings suggest that PZQ may act as an effective anti-fibrotic agent for preventing the progression of pulmonary fibrosis.
期刊介绍:
BMC Pharmacology and Toxicology is an open access, peer-reviewed journal that considers articles on all aspects of chemically defined therapeutic and toxic agents. The journal welcomes submissions from all fields of experimental and clinical pharmacology including clinical trials and toxicology.