利用基于标准化降水指数的 EEMD-ARIMA 模型提高干旱预测精度。

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Water Science and Technology Pub Date : 2024-02-01 DOI:10.2166/wst.2024.028
Reza Rezaiy, Ani Shabri
{"title":"利用基于标准化降水指数的 EEMD-ARIMA 模型提高干旱预测精度。","authors":"Reza Rezaiy, Ani Shabri","doi":"10.2166/wst.2024.028","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces ensemble empirical mode decomposition (EEMD) coupled with the autoregressive integrated moving average (ARIMA) model for drought prediction. In the realm of drought forecasting, we assess the EEMD-ARIMA model against the traditional ARIMA approach, using monthly precipitation data from January 1970 to December 2019 in Herat province, Afghanistan. Our evaluation spans various timescales of standardized precipitation index (SPI) 3, SPI 6, SPI 9, and SPI 12. Statistical indicators like root-mean-square error, mean absolute error (MAE), mean absolute percentage error (MAPE), and R<sup>2</sup> are employed. To comprehend data features thoroughly, each SPI series initially computed from the original monthly precipitation time series. Subsequently, each SPI undergoes decomposition using EEMD, resulting in intrinsic mode functions (IMFs) and one residual series. The next step involves forecasting each IMF component and residual using the corresponding ARIMA model. To create an ensemble forecast for the initial SPI series, the predicted outcomes of the modeled IMFs and residual series are finally added. Results indicate that EEMD-ARIMA significantly enhances drought forecasting accuracy compared to conventional ARIMA model.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"89 3","pages":"745-770"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2024_028/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing drought prediction precision with EEMD-ARIMA modeling based on standardized precipitation index.\",\"authors\":\"Reza Rezaiy, Ani Shabri\",\"doi\":\"10.2166/wst.2024.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces ensemble empirical mode decomposition (EEMD) coupled with the autoregressive integrated moving average (ARIMA) model for drought prediction. In the realm of drought forecasting, we assess the EEMD-ARIMA model against the traditional ARIMA approach, using monthly precipitation data from January 1970 to December 2019 in Herat province, Afghanistan. Our evaluation spans various timescales of standardized precipitation index (SPI) 3, SPI 6, SPI 9, and SPI 12. Statistical indicators like root-mean-square error, mean absolute error (MAE), mean absolute percentage error (MAPE), and R<sup>2</sup> are employed. To comprehend data features thoroughly, each SPI series initially computed from the original monthly precipitation time series. Subsequently, each SPI undergoes decomposition using EEMD, resulting in intrinsic mode functions (IMFs) and one residual series. The next step involves forecasting each IMF component and residual using the corresponding ARIMA model. To create an ensemble forecast for the initial SPI series, the predicted outcomes of the modeled IMFs and residual series are finally added. Results indicate that EEMD-ARIMA significantly enhances drought forecasting accuracy compared to conventional ARIMA model.</p>\",\"PeriodicalId\":23653,\"journal\":{\"name\":\"Water Science and Technology\",\"volume\":\"89 3\",\"pages\":\"745-770\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2024_028/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.028\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.028","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究将集合经验模式分解(EEMD)与自回归综合移动平均(ARIMA)模型相结合,用于干旱预测。在干旱预测领域,我们利用阿富汗赫拉特省 1970 年 1 月至 2019 年 12 月的月降水量数据,对 EEMD-ARIMA 模型与传统 ARIMA 方法进行了评估。我们的评估跨越了标准化降水指数(SPI)3、SPI 6、SPI 9 和 SPI 12 的不同时间尺度。采用了均方根误差、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和 R2 等统计指标。为了全面了解数据特征,每个 SPI 序列最初都是根据原始月降水时间序列计算得出的。随后,使用 EEMD 对每个 SPI 进行分解,得到本征模式函数(IMF)和一个残差序列。下一步是使用相应的 ARIMA 模型对每个 IMF 部分和残差进行预测。为了对初始 SPI 序列进行集合预测,最后将建模的 IMF 和残差序列的预测结果相加。结果表明,与传统的 ARIMA 模型相比,EEMD-ARIMA 能显著提高干旱预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing drought prediction precision with EEMD-ARIMA modeling based on standardized precipitation index.

This study introduces ensemble empirical mode decomposition (EEMD) coupled with the autoregressive integrated moving average (ARIMA) model for drought prediction. In the realm of drought forecasting, we assess the EEMD-ARIMA model against the traditional ARIMA approach, using monthly precipitation data from January 1970 to December 2019 in Herat province, Afghanistan. Our evaluation spans various timescales of standardized precipitation index (SPI) 3, SPI 6, SPI 9, and SPI 12. Statistical indicators like root-mean-square error, mean absolute error (MAE), mean absolute percentage error (MAPE), and R2 are employed. To comprehend data features thoroughly, each SPI series initially computed from the original monthly precipitation time series. Subsequently, each SPI undergoes decomposition using EEMD, resulting in intrinsic mode functions (IMFs) and one residual series. The next step involves forecasting each IMF component and residual using the corresponding ARIMA model. To create an ensemble forecast for the initial SPI series, the predicted outcomes of the modeled IMFs and residual series are finally added. Results indicate that EEMD-ARIMA significantly enhances drought forecasting accuracy compared to conventional ARIMA model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Science and Technology
Water Science and Technology 环境科学-工程:环境
CiteScore
4.90
自引率
3.70%
发文量
366
审稿时长
4.4 months
期刊介绍: Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.
期刊最新文献
Sewage sludge management and enhanced energy recovery using anaerobic digestion: an insight. Spatial differences of dissolved organic matter composition and humification in an artificial lake. Wetland systems for water pollution control. Activated persulfate for efficient bisphenol A degradation via nitrogen-doped Fe/Mn bimetallic biochar. Assessment of water quality in wells and springs across various districts of Taza City, Morocco.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1