{"title":"处理放射性药物治疗过程中的患者紧急情况。","authors":"","doi":"10.1016/j.prro.2023.12.014","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Radiopharmaceutical therapy (RPT) is a rapidly growing treatment modality. Though uncommon, patients may experience complications during their RPT treatment, which may trigger a rapid response from the hospital team. However, members of this team are typically not familiar with precautions for radiation safety. During these events, it is important to prioritize the patient's health over all else. There are some practices that can help minimize the risk of radiation contamination spread and exposure to staff while tending to the patient.</p></div><div><h3>Methods and Materials</h3><p>We formed a team to develop a standard protocol for handling patient emergencies during RPT treatment. This team consisted of an authorized user, radiation safety officer, medical physicist, nurse, RPT administration staff, and a quality/safety coordinator. The focus for developing this standardized protocol for RPT patient emergencies was 3-fold: (1) stabilize the patient; (2) reduce radiation exposure to staff; and (3) limit the spread of radiation contamination.</p></div><div><h3>Results</h3><p>We modified our hospital's existing rapid response protocol to account for the additional staff and tasks needed to accomplish all 3 of these goals. Each team member was assigned specific responsibilities, which include serving as a gatekeeper to restrict traffic, managing the crash cart, performing chest compressions, timing chest compressions, documenting the situation, and monitoring/managing radiation safety in the area. We developed a small, easy-to-read card for rapid response staff to read while they are en route to the area so they can be aware of and prepare for the unique circumstances that RPT treatments present.</p></div><div><h3>Conclusions</h3><p>Though rapid response events with RPT patients are uncommon, it is important to have a standardized protocol for how to handle these situations beforehand rather than improvise in the moment. We have provided an example of how our team adapted our hospital's current rapid response protocol to accommodate RPT patients.</p></div>","PeriodicalId":54245,"journal":{"name":"Practical Radiation Oncology","volume":"14 5","pages":"Pages 457-463"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Handling Patient Emergencies During Radiopharmaceutical Therapy\",\"authors\":\"\",\"doi\":\"10.1016/j.prro.2023.12.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>Radiopharmaceutical therapy (RPT) is a rapidly growing treatment modality. Though uncommon, patients may experience complications during their RPT treatment, which may trigger a rapid response from the hospital team. However, members of this team are typically not familiar with precautions for radiation safety. During these events, it is important to prioritize the patient's health over all else. There are some practices that can help minimize the risk of radiation contamination spread and exposure to staff while tending to the patient.</p></div><div><h3>Methods and Materials</h3><p>We formed a team to develop a standard protocol for handling patient emergencies during RPT treatment. This team consisted of an authorized user, radiation safety officer, medical physicist, nurse, RPT administration staff, and a quality/safety coordinator. The focus for developing this standardized protocol for RPT patient emergencies was 3-fold: (1) stabilize the patient; (2) reduce radiation exposure to staff; and (3) limit the spread of radiation contamination.</p></div><div><h3>Results</h3><p>We modified our hospital's existing rapid response protocol to account for the additional staff and tasks needed to accomplish all 3 of these goals. Each team member was assigned specific responsibilities, which include serving as a gatekeeper to restrict traffic, managing the crash cart, performing chest compressions, timing chest compressions, documenting the situation, and monitoring/managing radiation safety in the area. We developed a small, easy-to-read card for rapid response staff to read while they are en route to the area so they can be aware of and prepare for the unique circumstances that RPT treatments present.</p></div><div><h3>Conclusions</h3><p>Though rapid response events with RPT patients are uncommon, it is important to have a standardized protocol for how to handle these situations beforehand rather than improvise in the moment. We have provided an example of how our team adapted our hospital's current rapid response protocol to accommodate RPT patients.</p></div>\",\"PeriodicalId\":54245,\"journal\":{\"name\":\"Practical Radiation Oncology\",\"volume\":\"14 5\",\"pages\":\"Pages 457-463\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Practical Radiation Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879850024000389\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Practical Radiation Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879850024000389","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Handling Patient Emergencies During Radiopharmaceutical Therapy
Purpose
Radiopharmaceutical therapy (RPT) is a rapidly growing treatment modality. Though uncommon, patients may experience complications during their RPT treatment, which may trigger a rapid response from the hospital team. However, members of this team are typically not familiar with precautions for radiation safety. During these events, it is important to prioritize the patient's health over all else. There are some practices that can help minimize the risk of radiation contamination spread and exposure to staff while tending to the patient.
Methods and Materials
We formed a team to develop a standard protocol for handling patient emergencies during RPT treatment. This team consisted of an authorized user, radiation safety officer, medical physicist, nurse, RPT administration staff, and a quality/safety coordinator. The focus for developing this standardized protocol for RPT patient emergencies was 3-fold: (1) stabilize the patient; (2) reduce radiation exposure to staff; and (3) limit the spread of radiation contamination.
Results
We modified our hospital's existing rapid response protocol to account for the additional staff and tasks needed to accomplish all 3 of these goals. Each team member was assigned specific responsibilities, which include serving as a gatekeeper to restrict traffic, managing the crash cart, performing chest compressions, timing chest compressions, documenting the situation, and monitoring/managing radiation safety in the area. We developed a small, easy-to-read card for rapid response staff to read while they are en route to the area so they can be aware of and prepare for the unique circumstances that RPT treatments present.
Conclusions
Though rapid response events with RPT patients are uncommon, it is important to have a standardized protocol for how to handle these situations beforehand rather than improvise in the moment. We have provided an example of how our team adapted our hospital's current rapid response protocol to accommodate RPT patients.
期刊介绍:
The overarching mission of Practical Radiation Oncology is to improve the quality of radiation oncology practice. PRO''s purpose is to document the state of current practice, providing background for those in training and continuing education for practitioners, through discussion and illustration of new techniques, evaluation of current practices, and publication of case reports. PRO strives to provide its readers content that emphasizes knowledge "with a purpose." The content of PRO includes:
Original articles focusing on patient safety, quality measurement, or quality improvement initiatives
Original articles focusing on imaging, contouring, target delineation, simulation, treatment planning, immobilization, organ motion, and other practical issues
ASTRO guidelines, position papers, and consensus statements
Essays that highlight enriching personal experiences in caring for cancer patients and their families.