人类心肌细胞中 MYH7 变异的多重功能评估

IF 6 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Circulation: Genomic and Precision Medicine Pub Date : 2024-04-01 Epub Date: 2024-02-16 DOI:10.1161/CIRCGEN.123.004377
Clayton E Friedman, Shawn Fayer, Sriram Pendyala, Wei-Ming Chien, Alexander Loiben, Linda Tran, Leslie S Chao, Ashley McKinstry, Dania Ahmed, Stephen D Farris, April Stempien-Otero, Erica C Jonlin, Charles E Murry, Lea M Starita, Douglas M Fowler, Kai-Chun Yang
{"title":"人类心肌细胞中 MYH7 变异的多重功能评估","authors":"Clayton E Friedman, Shawn Fayer, Sriram Pendyala, Wei-Ming Chien, Alexander Loiben, Linda Tran, Leslie S Chao, Ashley McKinstry, Dania Ahmed, Stephen D Farris, April Stempien-Otero, Erica C Jonlin, Charles E Murry, Lea M Starita, Douglas M Fowler, Kai-Chun Yang","doi":"10.1161/CIRCGEN.123.004377","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pathogenic autosomal-dominant missense variants in <i>MYH7</i> (<i>myosin heavy chain 7</i>), which encodes the sarcomeric protein (β-MHC [beta myosin heavy chain]) expressed in cardiac and skeletal myocytes, are a leading cause of hypertrophic cardiomyopathy and are clinically actionable. However, ≈75% of <i>MYH7</i> missense variants are of unknown significance. While human-induced pluripotent stem cells (hiPSCs) can be differentiated into cardiomyocytes to enable the interrogation of <i>MYH7</i> variant effect in a disease-relevant context, deep mutational scanning has not been executed using diploid hiPSC derivates due to low hiPSC gene-editing efficiency. Moreover, multiplexable phenotypes enabling deep mutational scanning of <i>MYH7</i> variant hiPSC-derived cardiomyocytes are unknown.</p><p><strong>Methods: </strong>To overcome these obstacles, we used CRISPRa On-Target Editing Retrieval enrichment to generate an hiPSC library containing 113 <i>MYH7</i> codon variants suitable for deep mutational scanning. We first established that β-MHC protein loss occurs in a hypertrophic cardiomyopathy human heart with a pathogenic <i>MYH7</i> variant. We then differentiated the <i>MYH7</i> missense variant hiPSC library to cardiomyocytes for multiplexed assessment of β-MHC variant abundance by massively parallel sequencing and hiPSC-derived cardiomyocyte survival.</p><p><strong>Results: </strong>Both the multiplexed assessment of β-MHC abundance and hiPSC-derived cardiomyocyte survival accurately segregated all known pathogenic variants from synonymous variants. Functional data were generated for 4 variants of unknown significance and 58 additional <i>MYH7</i> missense variants not yet detected in patients.</p><p><strong>Conclusions: </strong>This study leveraged hiPSC differentiation into disease-relevant cardiomyocytes to enable multiplexed assessments of <i>MYH7</i> missense variants for the first time. Phenotyping strategies used here enable the application of deep mutational scanning to clinically actionable genes, which should reduce the burden of variants of unknown significance on patients and clinicians.</p>","PeriodicalId":10326,"journal":{"name":"Circulation: Genomic and Precision Medicine","volume":" ","pages":"e004377"},"PeriodicalIF":6.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11196868/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multiplexed Functional Assessments of <i>MYH7</i> Variants in Human Cardiomyocytes.\",\"authors\":\"Clayton E Friedman, Shawn Fayer, Sriram Pendyala, Wei-Ming Chien, Alexander Loiben, Linda Tran, Leslie S Chao, Ashley McKinstry, Dania Ahmed, Stephen D Farris, April Stempien-Otero, Erica C Jonlin, Charles E Murry, Lea M Starita, Douglas M Fowler, Kai-Chun Yang\",\"doi\":\"10.1161/CIRCGEN.123.004377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pathogenic autosomal-dominant missense variants in <i>MYH7</i> (<i>myosin heavy chain 7</i>), which encodes the sarcomeric protein (β-MHC [beta myosin heavy chain]) expressed in cardiac and skeletal myocytes, are a leading cause of hypertrophic cardiomyopathy and are clinically actionable. However, ≈75% of <i>MYH7</i> missense variants are of unknown significance. While human-induced pluripotent stem cells (hiPSCs) can be differentiated into cardiomyocytes to enable the interrogation of <i>MYH7</i> variant effect in a disease-relevant context, deep mutational scanning has not been executed using diploid hiPSC derivates due to low hiPSC gene-editing efficiency. Moreover, multiplexable phenotypes enabling deep mutational scanning of <i>MYH7</i> variant hiPSC-derived cardiomyocytes are unknown.</p><p><strong>Methods: </strong>To overcome these obstacles, we used CRISPRa On-Target Editing Retrieval enrichment to generate an hiPSC library containing 113 <i>MYH7</i> codon variants suitable for deep mutational scanning. We first established that β-MHC protein loss occurs in a hypertrophic cardiomyopathy human heart with a pathogenic <i>MYH7</i> variant. We then differentiated the <i>MYH7</i> missense variant hiPSC library to cardiomyocytes for multiplexed assessment of β-MHC variant abundance by massively parallel sequencing and hiPSC-derived cardiomyocyte survival.</p><p><strong>Results: </strong>Both the multiplexed assessment of β-MHC abundance and hiPSC-derived cardiomyocyte survival accurately segregated all known pathogenic variants from synonymous variants. Functional data were generated for 4 variants of unknown significance and 58 additional <i>MYH7</i> missense variants not yet detected in patients.</p><p><strong>Conclusions: </strong>This study leveraged hiPSC differentiation into disease-relevant cardiomyocytes to enable multiplexed assessments of <i>MYH7</i> missense variants for the first time. Phenotyping strategies used here enable the application of deep mutational scanning to clinically actionable genes, which should reduce the burden of variants of unknown significance on patients and clinicians.</p>\",\"PeriodicalId\":10326,\"journal\":{\"name\":\"Circulation: Genomic and Precision Medicine\",\"volume\":\" \",\"pages\":\"e004377\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11196868/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation: Genomic and Precision Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCGEN.123.004377\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation: Genomic and Precision Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCGEN.123.004377","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景:MYH7(肌球蛋白重链 7)编码在心肌细胞和骨骼肌细胞中表达的肉瘤蛋白(β-MHC [β肌球蛋白重链]),其致病性常染色体显性错义变异是肥厚型心肌病的主要病因之一,而且在临床上是可行的。然而,≈75% 的 MYH7 错义变异意义不明。虽然人类诱导多能干细胞(hiPSC)可以分化成心肌细胞,从而在疾病相关的背景下对MYH7变异效应进行检测,但由于hiPSC基因编辑效率较低,还没有使用二倍体hiPSC衍生物进行深度突变扫描。此外,能够对 MYH7 变异 hiPSC 衍生心肌细胞进行深度突变扫描的可复用表型也是未知的:为了克服这些障碍,我们使用 CRISPRa 靶向编辑检索富集技术生成了一个 hiPSC 文库,其中包含适合深度突变扫描的 113 个 MYH7 密码子变体。我们首先确定,在肥厚型心肌病人心脏中,β-MHC 蛋白缺失会导致致病性 MYH7 变异。然后,我们将 MYH7 错义变体 hiPSC 文库分化为心肌细胞,通过大规模平行测序和 hiPSC 衍生的心肌细胞存活率,对 β-MHC 变异丰度进行多重评估:结果:β-MHC 变异丰度的多重评估和 hiPSC 衍生的心肌细胞存活率都准确地将所有已知的致病变异与同义变异分离开来。针对在心肌病患者中检测到的 4 个意义不明的变体以及在患者中尚未检测到的另外 58 个 MYH7 错义变体,生成了功能数据:本研究利用 hiPSC 分化成疾病相关的心肌细胞,首次实现了对 MYH7 错义变异的多重评估。本研究采用的表型分析策略能够对临床上可操作的基因进行深度突变扫描,从而减轻意义不明的变异给患者和临床医生带来的负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiplexed Functional Assessments of MYH7 Variants in Human Cardiomyocytes.

Background: Pathogenic autosomal-dominant missense variants in MYH7 (myosin heavy chain 7), which encodes the sarcomeric protein (β-MHC [beta myosin heavy chain]) expressed in cardiac and skeletal myocytes, are a leading cause of hypertrophic cardiomyopathy and are clinically actionable. However, ≈75% of MYH7 missense variants are of unknown significance. While human-induced pluripotent stem cells (hiPSCs) can be differentiated into cardiomyocytes to enable the interrogation of MYH7 variant effect in a disease-relevant context, deep mutational scanning has not been executed using diploid hiPSC derivates due to low hiPSC gene-editing efficiency. Moreover, multiplexable phenotypes enabling deep mutational scanning of MYH7 variant hiPSC-derived cardiomyocytes are unknown.

Methods: To overcome these obstacles, we used CRISPRa On-Target Editing Retrieval enrichment to generate an hiPSC library containing 113 MYH7 codon variants suitable for deep mutational scanning. We first established that β-MHC protein loss occurs in a hypertrophic cardiomyopathy human heart with a pathogenic MYH7 variant. We then differentiated the MYH7 missense variant hiPSC library to cardiomyocytes for multiplexed assessment of β-MHC variant abundance by massively parallel sequencing and hiPSC-derived cardiomyocyte survival.

Results: Both the multiplexed assessment of β-MHC abundance and hiPSC-derived cardiomyocyte survival accurately segregated all known pathogenic variants from synonymous variants. Functional data were generated for 4 variants of unknown significance and 58 additional MYH7 missense variants not yet detected in patients.

Conclusions: This study leveraged hiPSC differentiation into disease-relevant cardiomyocytes to enable multiplexed assessments of MYH7 missense variants for the first time. Phenotyping strategies used here enable the application of deep mutational scanning to clinically actionable genes, which should reduce the burden of variants of unknown significance on patients and clinicians.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Circulation: Genomic and Precision Medicine
Circulation: Genomic and Precision Medicine Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
9.20
自引率
5.40%
发文量
144
期刊介绍: Circulation: Genomic and Precision Medicine is a distinguished journal dedicated to advancing the frontiers of cardiovascular genomics and precision medicine. It publishes a diverse array of original research articles that delve into the genetic and molecular underpinnings of cardiovascular diseases. The journal's scope is broad, encompassing studies from human subjects to laboratory models, and from in vitro experiments to computational simulations. Circulation: Genomic and Precision Medicine is committed to publishing studies that have direct relevance to human cardiovascular biology and disease, with the ultimate goal of improving patient care and outcomes. The journal serves as a platform for researchers to share their groundbreaking work, fostering collaboration and innovation in the field of cardiovascular genomics and precision medicine.
期刊最新文献
Cardiovascular Disease Pathogenicity Predictor (CVD-PP): A Tissue-Specific In Silico Tool for Discriminating Pathogenicity of Variants of Unknown Significance in Cardiovascular Disease Genes. Yield of Genetic Testing for Long-QT Syndrome in Elderly Patients With Torsades de Pointes. How Normal Is Low-Normal Left Ventricular Ejection Fraction in Familial Dilated Cardiomyopathy? Polygenic Risk and Coronary Artery Disease Severity. Clinical Utility of Protein Language Models in Resolution of Variants of Uncertain Significance in KCNQ1, KCNH2, and SCN5A Compared With Patch-Clamp Functional Characterization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1