Maxime Lalonde, Henning Ummethum, Manuel Trauner, Andreas Ettinger, Stephan Hamperl
{"title":"用于量化哺乳动物基因组中转录和复制活动的协调与重叠的自动图像分析管道。","authors":"Maxime Lalonde, Henning Ummethum, Manuel Trauner, Andreas Ettinger, Stephan Hamperl","doi":"10.1016/bs.mcb.2023.05.012","DOIUrl":null,"url":null,"abstract":"<p><p>Transcription-replication conflicts (TRCs) represent a potent endogenous source of replication stress. Besides the spatial and temporal coordination of replication and transcription programs, cells employ many additional mechanisms to resolve TRCs in a timely manner, thereby avoiding replication fork stalling and genomic instability. Proximity ligation assays (PLA) using antibodies against actively elongating RNA Polymerase II (RNAPIIpS2) and PCNA to detect proximity (<40nm) between transcribing RNA polymerases and replication forks can be used to assess and quantify TRC levels in cells. A complementary fluorescence microscopy approach to assess the spatial coordination of transcription and replication activities in the nucleus is to quantify the colocalization (200-400nm) between active transcription and ongoing replication using immunofluorescence staining with an antibody against elongating RNA Polymerase II (RNAPIIpS2) and EdU-Click-it pulse-labelling, respectively. Despite significant efforts to automate image analysis, the need for manual verification, correction, and complementation of automated processes creates a bottleneck for efficient, high-throughput and large-scale imaging. Here, we describe an automated Fiji image analysis macro that allows the user to automate the measurement of RNAPIIpS2 and EdU levels and extract the key parameters such as transcription-replication (TR) colocalization and TRC-PLA foci count from single cells in a high throughput manner. While we showcase the usability of this analysis pipeline for quantifying TR colocalization and TRC-PLA in mouse embryonic stem cells (mESCs), the analysis pipeline is designed as a generally applicable tool allowing the quantification of nuclear signals, colocalization and foci count in various model systems and cell types.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An automated image analysis pipeline to quantify the coordination and overlap of transcription and replication activity in mammalian genomes.\",\"authors\":\"Maxime Lalonde, Henning Ummethum, Manuel Trauner, Andreas Ettinger, Stephan Hamperl\",\"doi\":\"10.1016/bs.mcb.2023.05.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transcription-replication conflicts (TRCs) represent a potent endogenous source of replication stress. Besides the spatial and temporal coordination of replication and transcription programs, cells employ many additional mechanisms to resolve TRCs in a timely manner, thereby avoiding replication fork stalling and genomic instability. Proximity ligation assays (PLA) using antibodies against actively elongating RNA Polymerase II (RNAPIIpS2) and PCNA to detect proximity (<40nm) between transcribing RNA polymerases and replication forks can be used to assess and quantify TRC levels in cells. A complementary fluorescence microscopy approach to assess the spatial coordination of transcription and replication activities in the nucleus is to quantify the colocalization (200-400nm) between active transcription and ongoing replication using immunofluorescence staining with an antibody against elongating RNA Polymerase II (RNAPIIpS2) and EdU-Click-it pulse-labelling, respectively. Despite significant efforts to automate image analysis, the need for manual verification, correction, and complementation of automated processes creates a bottleneck for efficient, high-throughput and large-scale imaging. Here, we describe an automated Fiji image analysis macro that allows the user to automate the measurement of RNAPIIpS2 and EdU levels and extract the key parameters such as transcription-replication (TR) colocalization and TRC-PLA foci count from single cells in a high throughput manner. While we showcase the usability of this analysis pipeline for quantifying TR colocalization and TRC-PLA in mouse embryonic stem cells (mESCs), the analysis pipeline is designed as a generally applicable tool allowing the quantification of nuclear signals, colocalization and foci count in various model systems and cell types.</p>\",\"PeriodicalId\":18437,\"journal\":{\"name\":\"Methods in cell biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in cell biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mcb.2023.05.012\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2023.05.012","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/3 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
An automated image analysis pipeline to quantify the coordination and overlap of transcription and replication activity in mammalian genomes.
Transcription-replication conflicts (TRCs) represent a potent endogenous source of replication stress. Besides the spatial and temporal coordination of replication and transcription programs, cells employ many additional mechanisms to resolve TRCs in a timely manner, thereby avoiding replication fork stalling and genomic instability. Proximity ligation assays (PLA) using antibodies against actively elongating RNA Polymerase II (RNAPIIpS2) and PCNA to detect proximity (<40nm) between transcribing RNA polymerases and replication forks can be used to assess and quantify TRC levels in cells. A complementary fluorescence microscopy approach to assess the spatial coordination of transcription and replication activities in the nucleus is to quantify the colocalization (200-400nm) between active transcription and ongoing replication using immunofluorescence staining with an antibody against elongating RNA Polymerase II (RNAPIIpS2) and EdU-Click-it pulse-labelling, respectively. Despite significant efforts to automate image analysis, the need for manual verification, correction, and complementation of automated processes creates a bottleneck for efficient, high-throughput and large-scale imaging. Here, we describe an automated Fiji image analysis macro that allows the user to automate the measurement of RNAPIIpS2 and EdU levels and extract the key parameters such as transcription-replication (TR) colocalization and TRC-PLA foci count from single cells in a high throughput manner. While we showcase the usability of this analysis pipeline for quantifying TR colocalization and TRC-PLA in mouse embryonic stem cells (mESCs), the analysis pipeline is designed as a generally applicable tool allowing the quantification of nuclear signals, colocalization and foci count in various model systems and cell types.
期刊介绍:
For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.