{"title":"考虑到结构部件间相互作用效应的评估大压痕船舷碰撞的新分析模型","authors":"Yichi Zhang , Yuchao Yuan , Jiayou Zhou , Wenyong Tang","doi":"10.1016/j.marstruc.2024.103596","DOIUrl":null,"url":null,"abstract":"<div><p>Ship collision accidents occur frequently and developing rapid prediction methods for structural crashworthiness analysis is of crucial importance in the design phase. This paper proposed a new analytical method to rapidly evaluate side structural responses impacted by a rigid raked bow in right-angle ship collisions with large indentation. Numerical simulations were carried out to help identify and understand the mechanisms of structural deformation of primary structural members. The side structure is divided into different key components and a new analytical model for evaluating the hull shell plating and stiffeners under large indentation subjected to lateral impact was developed. The model considered the shell plating deformation in three different phases, denting, ruptured and tearing phase. Different formulas were derived to cover the analysis from minor deflection to large indentation. Combined with other existing formulas for stiffened decks under in-plane loads, an integrated method was proposed to predict the total resistance and energy dissipation of the side structure. The newly developed method innovatively considered the coupling effects and interactions between various structural members in the collision analysis by dynamically correcting some parameters theoretically. The newly developed method was verified against numerical simulations of full-scale ship collisions through five typical scenarios and good accuracy was achieved. The newly developed method is valuable for use in the preliminary design phase, especially for severe collision scenarios.</p></div>","PeriodicalId":49879,"journal":{"name":"Marine Structures","volume":"95 ","pages":"Article 103596"},"PeriodicalIF":4.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new analytical model to evaluate ship side collisions with large indentation considering interaction effects between structural components\",\"authors\":\"Yichi Zhang , Yuchao Yuan , Jiayou Zhou , Wenyong Tang\",\"doi\":\"10.1016/j.marstruc.2024.103596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ship collision accidents occur frequently and developing rapid prediction methods for structural crashworthiness analysis is of crucial importance in the design phase. This paper proposed a new analytical method to rapidly evaluate side structural responses impacted by a rigid raked bow in right-angle ship collisions with large indentation. Numerical simulations were carried out to help identify and understand the mechanisms of structural deformation of primary structural members. The side structure is divided into different key components and a new analytical model for evaluating the hull shell plating and stiffeners under large indentation subjected to lateral impact was developed. The model considered the shell plating deformation in three different phases, denting, ruptured and tearing phase. Different formulas were derived to cover the analysis from minor deflection to large indentation. Combined with other existing formulas for stiffened decks under in-plane loads, an integrated method was proposed to predict the total resistance and energy dissipation of the side structure. The newly developed method innovatively considered the coupling effects and interactions between various structural members in the collision analysis by dynamically correcting some parameters theoretically. The newly developed method was verified against numerical simulations of full-scale ship collisions through five typical scenarios and good accuracy was achieved. The newly developed method is valuable for use in the preliminary design phase, especially for severe collision scenarios.</p></div>\",\"PeriodicalId\":49879,\"journal\":{\"name\":\"Marine Structures\",\"volume\":\"95 \",\"pages\":\"Article 103596\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951833924000248\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951833924000248","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A new analytical model to evaluate ship side collisions with large indentation considering interaction effects between structural components
Ship collision accidents occur frequently and developing rapid prediction methods for structural crashworthiness analysis is of crucial importance in the design phase. This paper proposed a new analytical method to rapidly evaluate side structural responses impacted by a rigid raked bow in right-angle ship collisions with large indentation. Numerical simulations were carried out to help identify and understand the mechanisms of structural deformation of primary structural members. The side structure is divided into different key components and a new analytical model for evaluating the hull shell plating and stiffeners under large indentation subjected to lateral impact was developed. The model considered the shell plating deformation in three different phases, denting, ruptured and tearing phase. Different formulas were derived to cover the analysis from minor deflection to large indentation. Combined with other existing formulas for stiffened decks under in-plane loads, an integrated method was proposed to predict the total resistance and energy dissipation of the side structure. The newly developed method innovatively considered the coupling effects and interactions between various structural members in the collision analysis by dynamically correcting some parameters theoretically. The newly developed method was verified against numerical simulations of full-scale ship collisions through five typical scenarios and good accuracy was achieved. The newly developed method is valuable for use in the preliminary design phase, especially for severe collision scenarios.
期刊介绍:
This journal aims to provide a medium for presentation and discussion of the latest developments in research, design, fabrication and in-service experience relating to marine structures, i.e., all structures of steel, concrete, light alloy or composite construction having an interface with the sea, including ships, fixed and mobile offshore platforms, submarine and submersibles, pipelines, subsea systems for shallow and deep ocean operations and coastal structures such as piers.