{"title":"异桔梗甙元通过抑制 Caspase-1 的激活和突变 NLRP3 的聚集,抑制了 CAPS 突变的 NLRP3 炎性体的激活。","authors":"Fumitake Usui-Kawanishi, Koudai Kani, Tadayoshi Karasawa, Hiroe Honda, Nobuyuki Takayama, Masafumi Takahashi, Kiyoshi Takatsu, Yoshinori Nagai","doi":"10.1111/gtc.13108","DOIUrl":null,"url":null,"abstract":"<p>The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome contributes to the development of inflammatory diseases. Cryopyrin-associated periodic syndrome (CAPS) is an autoinflammatory disease caused by NLRP3 gene mutations that results in excessive IL-1β production. We previously identified isoliquiritigenin (ILG), a component of <i>Glycyrrhiza uralensis</i> extracts, as a potent inhibitor of the NLRP3 inflammasome. Here, we aimed to investigate whether ILG inhibits the activation of NLRP3 inflammasome caused by NLRP3 gene mutations. We demonstrated that ILG significantly inhibited NLRP3 inflammasome-mediated lactate dehydrogenase (LDH) release and IL-1β production in two CAPS model THP-1 cell lines, NLRP3-D303N and NLRP3-L353P, in a dose-dependent manner. Interestingly, the NLRP3 inhibitor MCC950 inhibited LDH release and IL-1β production in NLRP3-D303N cells, but not in NLRP3-L353P cells. Western blotting and caspase-1 activity assays showed that ILG, as well as caspase inhibitors, including Z-VAD and YVAD, suppressed caspase-1 activation. Notably, ILG prevented cryo-sensitive foci formation of NLRP3 without affecting the levels of intracellular Ca<sup>2+</sup>. We concluded that ILG effectively prevents the constitutive activation of the inflammasome associated with NLRP3 gene mutations by inhibiting the aggregation of cryo-sensitive mutated NLRP3.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isoliquiritigenin inhibits NLRP3 inflammasome activation with CAPS mutations by suppressing caspase-1 activation and mutated NLRP3 aggregation\",\"authors\":\"Fumitake Usui-Kawanishi, Koudai Kani, Tadayoshi Karasawa, Hiroe Honda, Nobuyuki Takayama, Masafumi Takahashi, Kiyoshi Takatsu, Yoshinori Nagai\",\"doi\":\"10.1111/gtc.13108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome contributes to the development of inflammatory diseases. Cryopyrin-associated periodic syndrome (CAPS) is an autoinflammatory disease caused by NLRP3 gene mutations that results in excessive IL-1β production. We previously identified isoliquiritigenin (ILG), a component of <i>Glycyrrhiza uralensis</i> extracts, as a potent inhibitor of the NLRP3 inflammasome. Here, we aimed to investigate whether ILG inhibits the activation of NLRP3 inflammasome caused by NLRP3 gene mutations. We demonstrated that ILG significantly inhibited NLRP3 inflammasome-mediated lactate dehydrogenase (LDH) release and IL-1β production in two CAPS model THP-1 cell lines, NLRP3-D303N and NLRP3-L353P, in a dose-dependent manner. Interestingly, the NLRP3 inhibitor MCC950 inhibited LDH release and IL-1β production in NLRP3-D303N cells, but not in NLRP3-L353P cells. Western blotting and caspase-1 activity assays showed that ILG, as well as caspase inhibitors, including Z-VAD and YVAD, suppressed caspase-1 activation. Notably, ILG prevented cryo-sensitive foci formation of NLRP3 without affecting the levels of intracellular Ca<sup>2+</sup>. We concluded that ILG effectively prevents the constitutive activation of the inflammasome associated with NLRP3 gene mutations by inhibiting the aggregation of cryo-sensitive mutated NLRP3.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13108\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13108","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Isoliquiritigenin inhibits NLRP3 inflammasome activation with CAPS mutations by suppressing caspase-1 activation and mutated NLRP3 aggregation
The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome contributes to the development of inflammatory diseases. Cryopyrin-associated periodic syndrome (CAPS) is an autoinflammatory disease caused by NLRP3 gene mutations that results in excessive IL-1β production. We previously identified isoliquiritigenin (ILG), a component of Glycyrrhiza uralensis extracts, as a potent inhibitor of the NLRP3 inflammasome. Here, we aimed to investigate whether ILG inhibits the activation of NLRP3 inflammasome caused by NLRP3 gene mutations. We demonstrated that ILG significantly inhibited NLRP3 inflammasome-mediated lactate dehydrogenase (LDH) release and IL-1β production in two CAPS model THP-1 cell lines, NLRP3-D303N and NLRP3-L353P, in a dose-dependent manner. Interestingly, the NLRP3 inhibitor MCC950 inhibited LDH release and IL-1β production in NLRP3-D303N cells, but not in NLRP3-L353P cells. Western blotting and caspase-1 activity assays showed that ILG, as well as caspase inhibitors, including Z-VAD and YVAD, suppressed caspase-1 activation. Notably, ILG prevented cryo-sensitive foci formation of NLRP3 without affecting the levels of intracellular Ca2+. We concluded that ILG effectively prevents the constitutive activation of the inflammasome associated with NLRP3 gene mutations by inhibiting the aggregation of cryo-sensitive mutated NLRP3.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.