1.5 T 颈椎和足部成像中针对特定对象脂肪饱和度的快速在线光谱空间脉冲设计

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Magnetic Resonance Materials in Physics, Biology and Medicine Pub Date : 2024-04-01 Epub Date: 2024-02-17 DOI:10.1007/s10334-024-01149-8
Christian Karl Eisen, Patrick Liebig, Jürgen Herrler, Dieter Ritter, Simon Lévy, Michael Uder, Armin Michael Nagel, David Grodzki
{"title":"1.5 T 颈椎和足部成像中针对特定对象脂肪饱和度的快速在线光谱空间脉冲设计","authors":"Christian Karl Eisen, Patrick Liebig, Jürgen Herrler, Dieter Ritter, Simon Lévy, Michael Uder, Armin Michael Nagel, David Grodzki","doi":"10.1007/s10334-024-01149-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To compensate subject-specific field inhomogeneities and enhance fat pre-saturation with a fast online individual spectral-spatial (SPSP) single-channel pulse design.</p><p><strong>Methods: </strong>The RF shape is calculated online using subject-specific field maps and a predefined excitation k-space trajectory. Calculation acceleration options are explored to increase clinical viability. Four optimization configurations are compared to a standard Gaussian spectral selective pre-saturation pulse and to a Dixon acquisition using phantom and volunteer (N = 5) data at 1.5 T with a turbo spin echo (TSE) sequence. Measurements and simulations are conducted across various body parts and image orientations.</p><p><strong>Results: </strong>Phantom measurements demonstrate up to a 3.5-fold reduction in residual fat signal compared to Gaussian fat saturation. In vivo evaluations show improvements up to sixfold for dorsal subcutaneous fat in sagittal cervical spine acquisitions. The versatility of the tailored trajectory is confirmed through sagittal foot/ankle, coronal, and transversal cervical spine experiments. Additional measurements indicate that excitation field (B1) information can be disregarded at 1.5 T. Acceleration methods reduce computation time to a few seconds.</p><p><strong>Discussion: </strong>An individual pulse design that primarily compensates for main field (B0) inhomogeneities in fat pre-saturation is successfully implemented within an online \"push-button\" workflow. Both fat saturation homogeneity and the level of suppression are improved.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"257-272"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10995033/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fast online spectral-spatial pulse design for subject-specific fat saturation in cervical spine and foot imaging at 1.5 T.\",\"authors\":\"Christian Karl Eisen, Patrick Liebig, Jürgen Herrler, Dieter Ritter, Simon Lévy, Michael Uder, Armin Michael Nagel, David Grodzki\",\"doi\":\"10.1007/s10334-024-01149-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To compensate subject-specific field inhomogeneities and enhance fat pre-saturation with a fast online individual spectral-spatial (SPSP) single-channel pulse design.</p><p><strong>Methods: </strong>The RF shape is calculated online using subject-specific field maps and a predefined excitation k-space trajectory. Calculation acceleration options are explored to increase clinical viability. Four optimization configurations are compared to a standard Gaussian spectral selective pre-saturation pulse and to a Dixon acquisition using phantom and volunteer (N = 5) data at 1.5 T with a turbo spin echo (TSE) sequence. Measurements and simulations are conducted across various body parts and image orientations.</p><p><strong>Results: </strong>Phantom measurements demonstrate up to a 3.5-fold reduction in residual fat signal compared to Gaussian fat saturation. In vivo evaluations show improvements up to sixfold for dorsal subcutaneous fat in sagittal cervical spine acquisitions. The versatility of the tailored trajectory is confirmed through sagittal foot/ankle, coronal, and transversal cervical spine experiments. Additional measurements indicate that excitation field (B1) information can be disregarded at 1.5 T. Acceleration methods reduce computation time to a few seconds.</p><p><strong>Discussion: </strong>An individual pulse design that primarily compensates for main field (B0) inhomogeneities in fat pre-saturation is successfully implemented within an online \\\"push-button\\\" workflow. Both fat saturation homogeneity and the level of suppression are improved.</p>\",\"PeriodicalId\":18067,\"journal\":{\"name\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"volume\":\" \",\"pages\":\"257-272\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10995033/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10334-024-01149-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-024-01149-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的通过快速在线单通道频谱-空间(SPSP)脉冲设计,补偿特定受试者的场不均匀性并提高脂肪预饱和度:方法:利用特定受试者的场图和预定义的激发 k 空间轨迹在线计算射频形状。探索了计算加速选项,以提高临床可行性。将四种优化配置与标准高斯频谱选择性预饱和脉冲进行了比较,并使用模型和志愿者(N = 5)的数据在 1.5 T 下通过涡轮自旋回波(TSE)序列与 Dixon 采集进行了比较。对不同身体部位和图像方向进行了测量和模拟:模型测量结果表明,与高斯脂肪饱和度相比,残余脂肪信号最多可减少 3.5 倍。体内评估显示,在颈椎矢状图采集中,背侧皮下脂肪信号最多可提高 6 倍。矢状脚/脚踝、冠状和横向颈椎实验证实了定制轨迹的多功能性。其他测量结果表明,在 1.5 T 时可以忽略激励场 (B1) 信息:讨论:在一个在线 "按钮 "工作流程中,成功实现了主要补偿脂肪预饱和主场(B0)不均匀性的单脉冲设计。脂肪饱和的均匀性和抑制水平都得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast online spectral-spatial pulse design for subject-specific fat saturation in cervical spine and foot imaging at 1.5 T.

Objective: To compensate subject-specific field inhomogeneities and enhance fat pre-saturation with a fast online individual spectral-spatial (SPSP) single-channel pulse design.

Methods: The RF shape is calculated online using subject-specific field maps and a predefined excitation k-space trajectory. Calculation acceleration options are explored to increase clinical viability. Four optimization configurations are compared to a standard Gaussian spectral selective pre-saturation pulse and to a Dixon acquisition using phantom and volunteer (N = 5) data at 1.5 T with a turbo spin echo (TSE) sequence. Measurements and simulations are conducted across various body parts and image orientations.

Results: Phantom measurements demonstrate up to a 3.5-fold reduction in residual fat signal compared to Gaussian fat saturation. In vivo evaluations show improvements up to sixfold for dorsal subcutaneous fat in sagittal cervical spine acquisitions. The versatility of the tailored trajectory is confirmed through sagittal foot/ankle, coronal, and transversal cervical spine experiments. Additional measurements indicate that excitation field (B1) information can be disregarded at 1.5 T. Acceleration methods reduce computation time to a few seconds.

Discussion: An individual pulse design that primarily compensates for main field (B0) inhomogeneities in fat pre-saturation is successfully implemented within an online "push-button" workflow. Both fat saturation homogeneity and the level of suppression are improved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
58
审稿时长
>12 weeks
期刊介绍: MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include: advances in materials, hardware and software in magnetic resonance technology, new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine, study of animal models and intact cells using magnetic resonance, reports of clinical trials on humans and clinical validation of magnetic resonance protocols.
期刊最新文献
Development of a cost-effective 3D-printed MRI phantom for enhanced teaching of system performance and image quality concepts. FeCl3 and GdCl3 solutions as superfast relaxation modifiers for agarose gel: a quantitative analysis. Correction to: Motion robust coronary MR angiography using zigzag centric ky-kz trajectory and high-resolution deep learning reconstruction. Quantitative MRI methods for the assessment of structure, composition, and function of musculoskeletal tissues in basic research and preclinical applications. PyFaceWipe: a new defacing tool for almost any MRI contrast.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1